140 research outputs found

    Spray-assisted assembly of thin-film composite membranes in one process

    Get PDF
    Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 mins. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ppm of NaCl in water at 4 bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 L m-2 h-1 bar-1, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites via spray coating in a single process, potentially reducing fabrication time during scale-up production

    Leakage Analysis and Solution of the RFID Analog Front-END

    Get PDF
    The identification and modeling of different leakage components are very important for estimation and reduction of leakage power, especially low-power applications, such as RFID chip. This paper proposes a theory about leakage mechanism of RFID chip and proves the theory. The one contribution of the paper is the proposed theory about leakage mechanism of RFID chip. The other contribution is that it proves the differences between tape-out verification results and computer simulation results and that to what degree the differences occur for different circuits. And when the source potential is much lower than the substrate potential, tape-out verification results and computer simulation results have larger differences. The test results show that the actual leakage power increases 26.3 times compares with the computer simulation results’ when the source potential is -750mV

    First-order magnetic and structural phase transitions in Fe1+y_{1+y}Sex_xTe1−x_{1-x}

    Full text link
    We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and magnetic phase transitions in Fe1+y_{1+y}Se% x_xTe1−x_{1-x}. Fe1.068_{1.068}Te exhibits a first order phase transition near 67 K with a tetragonal to monoclinic structural transition and simultaneously develops a collinear antiferromagnetic (AF) order responsible for the entropy change across the transition. Systematic studies of FeSe%_{1-x}Tex_x system reveal that the AF structure and lattice distortion in these materials are different from those of FeAs-based pnictides. These results call into question the conclusions of present density functional calculations, where FeSe1−x_{1-x}Tex_x and FeAs-based pnictides are expected to have similar Fermi surfaces and therefore the same spin-density-wave AF order.Comment: 5 pages, 3 figure

    Tracking the nematicity in cuprate superconductors: a resistivity study under uniaxial pressure

    Full text link
    Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been suggested that the rotational symmetry is broken in this state and may result in a nematic phase transition, whose temperature seems to coincide with the onset temperature of the pseudogap state T∗T^* around optimal doping level, raising the question whether the pseudogap results from the establishment of the nematic order. Here we report results of resistivity measurements under uniaxial pressure on several hole-doped cuprates, where the normalized slope of the elastoresistivity ζ\zeta can be obtained as illustrated in iron-based superconductors. The temperature dependence of ζ\zeta along particular lattice axis exhibits kink feature at TkT_{k} and shows Curie-Weiss-like behavior above it, which may suggest a spontaneous nematic transition. While TkT_{k} seems to be the same as T∗T^* around the optimal doping and in the overdoped region, they become very different in underdoped La2−x_{2-x}Srx_{x}CuO4_4. Our results suggest that the nematic order, if indeed existing, is an electronic phase within the pseudogap state.Comment: 6 pages, 4 figure
    • …
    corecore