3,431 research outputs found

    Development of Computer Vision-Enhanced Smart Golf Ball Retriever

    Get PDF
    An automatic vehicle system was developed to assist golfers in collecting golf balls from a practice field. Computer vision methodology was utilized to enhance the detection of golf balls in shallow and/or deep grass regions. The free software OpenCV was used in this project because of its powerful features and supported repository. The homemade golf ball picker was built with a smart recognition function for golf balls and can lock onto targets by itself. A set of field tests was completed in which the rate of golf ball recognition was as high as 95%. We report that this homemade smart golf ball picker can reduce the tremendous amount of labor associated with having to gather golf balls scattered throughout a practice field

    Point Discriminative Learning for Data-efficient 3D Point Cloud Analysis

    Full text link
    3D point cloud analysis has drawn a lot of research attention due to its wide applications. However, collecting massive labelled 3D point cloud data is both time-consuming and labor-intensive. This calls for data-efficient learning methods. In this work we propose PointDisc, a point discriminative learning method to leverage self-supervisions for data-efficient 3D point cloud classification and segmentation. PointDisc imposes a novel point discrimination loss on the middle and global level features produced by the backbone network. This point discrimination loss enforces learned features to be consistent with points belonging to the corresponding local shape region and inconsistent with randomly sampled noisy points. We conduct extensive experiments on 3D object classification, 3D semantic and part segmentation, showing the benefits of PointDisc for data-efficient learning. Detailed analysis demonstrate that PointDisc learns unsupervised features that well capture local and global geometry.Comment: This work is published in 3DV 202

    2019 Overview

    Get PDF
    The CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews, and reports of novel findings of therapeutic relevance to the central nervous system. Its focus includes clinical pharmacology, drug development, and novel methodologies for drug evaluation in neurological and psychiatric diseases. We are pleased to announce that CNS Neuroscience & Therapeutics has become an Open‐Access Journal as of January 2019. This would allow wider dissemination of scientific knowledge and facilitate collaborative efforts toward advancing novel and solid research on the maintenance of brain homeostasis and repairing the aging and dysfunctional brain

    Scattering approach for calculating one-loop effective action and vacuum energy

    Full text link
    An approach for calculating one-loop effective actions and vacuum energies in nonrelativistic quantum field theory is suggested. The starting point is to regard one-loop effective actions and vacuum energies in quantum field theory and scattering phase shifts and amplitudes in quantum mechanics as spectral functions of an operator. Different spectral functions of the same operator may belong to different fields of physics. Methods for calculating various spectral functions can be interconverted through transform relations among spectral functions. In principle, all methods for calculating scattering phase shifts and amplitudes can be converted to methods for the calculation of the one-loop effective actions and vacuum energies. As an example, we convert the Born approximation in quantum mechanics to a method for calculating one-loop effective actions and vacuum energies

    On Representation Knowledge Distillation for Graph Neural Networks

    Full text link
    Knowledge distillation is a learning paradigm for boosting resource-efficient graph neural networks (GNNs) using more expressive yet cumbersome teacher models. Past work on distillation for GNNs proposed the Local Structure Preserving loss (LSP), which matches local structural relationships defined over edges across the student and teacher's node embeddings. This paper studies whether preserving the global topology of how the teacher embeds graph data can be a more effective distillation objective for GNNs, as real-world graphs often contain latent interactions and noisy edges. We propose Graph Contrastive Representation Distillation (G-CRD), which uses contrastive learning to implicitly preserve global topology by aligning the student node embeddings to those of the teacher in a shared representation space. Additionally, we introduce an expanded set of benchmarks on large-scale real-world datasets where the performance gap between teacher and student GNNs is non-negligible. Experiments across 4 datasets and 14 heterogeneous GNN architectures show that G-CRD consistently boosts the performance and robustness of lightweight GNNs, outperforming LSP (and a global structure preserving variant of LSP) as well as baselines from 2D computer vision. An analysis of the representational similarity among teacher and student embedding spaces reveals that G-CRD balances preserving local and global relationships, while structure preserving approaches are best at preserving one or the other

    Association of erythrocyte n-3 polyunsaturated fatty acids with incident type 2 diabetes in a Chinese population

    Get PDF
    Summary Background & aims The association between circulating n-3 polyunsaturated fatty acid (PUFA) biomarkers and incident type 2 diabetes in Asian populations remains unclear. We aimed to examine the association of erythrocyte n-3 PUFA with incident type 2 diabetes in a Chinese population. Methods A total of 2671 participants, aged 40–75 y, free of type 2 diabetes at baseline, were included in the present analysis. Incident type 2 diabetes cases (n = 213) were ascertained during median follow-up of 5.6 years. Baseline erythrocyte fatty acids were measured by gas chromatography. We used multivariable Cox regression models to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of type 2 diabetes across quartiles of erythrocyte n-3 PUFA. Results After adjustment for potential confounders, HRs (95% CIs) of type 2 diabetes were 0.68 (0.47, 1.00), 0.77 (0.52, 1.15), and 0.63 (0.41, 0.95) in quartiles 2–4 of docosapentaenoic acid (C22:5n-3) (P-trend = 0.07), compared with quartile 1; and 1.08 (0.74, 1.60), 1.03 (0.70, 1.51), and 0.57 (0.38, 0.86) for eicosapentaenoic acid (C20:5n-3) (P-trend = 0.007). No association was found for docosahexaenoic acid (C22:6n-3) or alpha-linolenic acid (C18:3n-3). Conclusions Erythrocyte n-3 PUFA from marine sources (C22:5n-3 and C20:5n-3), as biomarkers of dietary marine n-3 PUFA, were inversely associated with incident type 2 diabetes in this Chinese population. Future prospective investigations in other Asian populations are necessary to confirm our findings
    • 

    corecore