99 research outputs found

    Detection of genetic and epigenetic DNA markers in urine for the early detection of primary and recurrent hepatocellular carcinoma

    Get PDF
    Poster presented at American Association of the Study of Liver Diseases (AASLD) meeting in San Francisco California. Objective: Develop a urine test using a panel of select genetic and epigenetic markers for the early detection of primary and recurrent HCC. Introduction: Hepatocellular carcinoma (HCC) or liver cancer is an aggressive disease and one of the fastest growing cancers by incidence in the United States. Early detection is the key for effective treatment of HCC as the 5-year survival rate is 26% in early stage HCC as compared to only 2% when found after spreading to distant organs. The current marker, alpha-feto protein (AFP) and its fucosylated glycoform, L3, are of limited value with only 40-60% sensitivity.https://jdc.jefferson.edu/gastrohepposters/1000/thumbnail.jp

    A bi‐organellar phylogenomic study of Pandanales: inference of higher‐order relationships and unusual rate‐variation patterns

    Full text link
    We used a bi‐organellar phylogenomic approach to address higher‐order relationships in Pandanales, including the first molecular phylogenetic study of the panama‐hat family, Cyclanthaceae. Our genus‐level study of plastid and mitochondrial gene sets includes a comprehensive sampling of photosynthetic lineages across the order, and provides a framework for investigating clade ages, biogeographic hypotheses and organellar molecular evolution. Using multiple inference methods and both organellar genomes, we recovered mostly congruent and strongly supported relationships within and between families, including the placement of fully mycoheterotrophic Triuridaceae. Cyclanthaceae and Pandanaceae plastomes have slow substitution rates, contributing to weakly supported plastid‐based relationships in Cyclanthaceae. While generally slowly evolving, mitochondrial genomes exhibit sporadic rate elevation across the order. However, we infer well‐supported relationships even for slower evolving mitochondrial lineages in Cyclanthaceae. Clade age estimates across photosynthetic lineages are largely consistent with previous studies, are well correlated between the two organellar genomes (with slightly younger inferences from mitochondrial data), and support several biogeographic hypotheses. We show that rapidly evolving non‐photosynthetic lineages may bias age estimates upwards at neighbouring photosynthetic nodes, even using a relaxed clock model. Finally, we uncovered new genome structural variants in photosynthetic taxa at plastid inverted repeat boundaries that show promise as interfamilial phylogenetic markers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/33/cla12417-sup-0025-TableS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/32/cla12417-sup-0017-FigS17.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/31/cla12417-sup-0004-FigS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/30/cla12417-sup-0019-FigS19.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/29/cla12417-sup-0020-FigS20.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/28/cla12417_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/27/cla12417-sup-0005-FigS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/26/cla12417-sup-0012-FigS12.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/25/cla12417-sup-0007-FigS7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/24/cla12417-sup-0022-FigS22.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/23/cla12417-sup-0029-TableS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/22/cla12417-sup-0010-FigS10.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/21/cla12417-sup-0011-FigS11.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/20/cla12417-sup-0014-FigS14.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/19/cla12417-sup-0002-FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/18/cla12417-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/17/cla12417.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/16/cla12417-sup-0030-TableS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/15/cla12417-sup-0021-FigS21.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/14/cla12417-sup-0023-FigS23.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/13/cla12417-sup-0009-FigS9.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/12/cla12417-sup-0031-TableS7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/11/cla12417-sup-0006-FigS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/10/cla12417-sup-0003-FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/9/cla12417-sup-0024-FigS24.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/8/cla12417-sup-0008-FigS8.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/7/cla12417-sup-0028-TableS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/6/cla12417-sup-0016-FigS16.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/5/cla12417-sup-0013-FigS13.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/4/cla12417-sup-0018-FigS18.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/3/cla12417-sup-0026-TableS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/2/cla12417-sup-0015-FigS15.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/1/cla12417-sup-0027-TableS3.pd

    Integrated Assessment of Circulating Cell-Free MicroRNA Signatures in Plasma of Patients with Melanoma Brain Metastasis.

    Get PDF
    Primary cutaneous melanoma frequently metastasizes to distant organs including the brain. Identification of cell-free microRNAs (cfmiRs) found in the blood can be used as potential body fluid biomarkers for detecting and monitoring patients with melanoma brain metastasis (MBM). In this pilot study, we initially aimed to identify cfmiRs in the blood of MBM patients. Normal donors plasma (healthy, n = 48) and pre-operative MBM patients\u27 plasma samples (n = 36) were compared for differences in \u3e2000 microRNAs (miRs) using a next generation sequencing (NGS) probe-based assay. A 74 cfmiR signature was identified in an initial cohort of MBM plasma samples and then verified in a second cohort of MBM plasma samples (n = 24). Of these, only 58 cfmiRs were also detected in MBM tissues (n = 24). CfmiR signatures were also found in patients who have lung and breast cancer brain metastasis (n = 13) and glioblastomas (n = 36) compared to MBM plasma samples. The 74 cfmiR signature and the latter cfmiR signatures were then compared. We found a 6 cfmiR signature that was commonly upregulated in MBM plasma samples in all of the comparisons, and a 29 cfmiR signature that distinguishes MBM patients from normal donors\u27 samples. In addition, we assessed for cfmiRs in plasma (n = 20) and urine (n = 14) samples collected from metastatic melanoma patients receiving checkpoint inhibitor immunotherapy (CII). Pre- and post-treatment samples showed consistent changes in cfmiRs. Analysis of pre- and post-treatment plasma samples showed 8 differentially expressed (DE) cfmiRs that overlapped with the 35 cfmiR signature found in MBM patients. In paired pre-treatment plasma and urine samples receiving CII 8 cfmiRs overlapped. This study identified specific cfmiRs in MBM plasma samples that may potentially allow for assessment of melanoma patients developing MBM. The cfmiR signatures identified in both blood and urine may have potential utility to assess CII responses after further validation

    Acupuncture sensation during ultrasound guided acupuncture needling

    Get PDF
    Although acupuncture sensation (also known as de qi) is a cornerstone of traditional acupuncture therapy, most research has accepted the traditional method of defining acupuncture sensation only through subjective patient reports rather than on any quantifiable physiological basis

    Novel Urine Cell-Free DNA Methylation Markers for Hepatocellular Carcinoma

    Get PDF
    An optimized hepatocellular carcinoma (HCC)-targeted methylation next generation sequencing assay was developed to discover HCC-associated methylation markers directly from urine for HCC screening. Urine cell-free DNA (ucfDNA) isolated from a discovery cohort of 31 non-HCC and 30 HCC was used for biomarker discovery, identifying 29 genes with differentially methylated regions (DMRs). Methylation-specific qPCR (MSqPCR) assays were developed to verify the selected DMRs corresponding to 8 genes (GRASP, CCND2, HOXA9, BMP4, VIM, EMX1, SFRP1, and ECE). Using archived ucfDNA, methylation of GRASP, HOXA9, BMP4, and ECE1, were found to be significantly different (p \u3c 0.05) between HCC and non-HCC patients. The four markers together with previously reported GSTP1 and RASSF1A markers were assessed as a 6-marker panel in an independent training cohort of 87 non-HCC and 78 HCC using logistic regression modeling. AUROC of 0.908 (95% CI, 0.8656-0.9252) was identified for the 6-marker panel with AFP, which was significantly higher than AFP-alone (AUROC 0.841 (95% CI, 0.778-0.904), p = 0.0026). Applying backward selection method, a 4-marker panel was found to exhibit similar performance to the 6-marker panel with AFP having 80% sensitivity compared to 29.5% by AFP-alone at a specificity of 85%. This study supports the potential use of methylated transrenal ucfDNA for HCC screening

    Persistently Elevated HBV Viral-Host Junction DNA in Urine as a Biomarker for Hepatocellular Carcinoma Minimum Residual Disease and Recurrence: A Pilot Study

    Get PDF
    Hepatitis B virus (HBV)-host junction sequences (HBV-JSs) has been detected in the urine of patients with HBV infection. This study evaluated HBV-JSs as a marker of minimum residual disease (MRD) and tumor recurrence after treatment in HBV-hepatocellular carcinoma (HCC) patients. Archived serial urine DNA from two HBV–HCC with recurrence as confirmed by MRI and four HBV-related cirrhosis (LC) patients were used. Urinary HBV-JSs were identified by an HBV-targeted NGS assay. Quantitative junction-specific PCR assays were developed to investigate dynamic changes of the most abundant urinary HBV-JS. Abundant urinary HBV-JSs were identified in two cases of tumor recurrence. In case 1, a 78-year-old female with HBV- HCC underwent a follow-up MRI following microwave ablation. While MRI results were variable, the unique HBV-JS DNA, HBV-Chr17, steadily increased from initial diagnosis to HCC recurrence. In case 2, a 74-year-old male with HBV–HCC contained two HBV-JS DNA, HBV-Chr11 and HBV-TERT, that steadily increased after initial HCC diagnosis till recurrence. One LC examined had HBV-TERT DNA detected, but transiently in 3.5 years during HCC surveillance. HBV-JS DNA was persistently elevated prior to the diagnosis of recurrent HCC, suggesting the potential of urinary HBV-JS DNA to detect MRD and HCC recurrence after treatment

    Distributed and asynchronous data collection in cognitive radio networks with fairness consideration

    Get PDF
    Abstract-As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem for asynchronous CRNs, which has not been addressed before. We study the Proper Carrier-sensing Range (PCR) for SUs. By working with this PCR, an SU can successfully conduct data transmission without disturbing the activities of PUs and other SUs. Subsequently, based on the PCR, we propose an Asynchronous Distributed Data Collection (ADDC) algorithm with fairness consideration for CRNs. ADDC collects a snapshot of data to the base station in a distributed manner without the time synchronization requirement. The algorithm is scalable and more practical compared with centralized and synchronized algorithms. Through comprehensive theoretical analysis, we show that ADDC is order-optimal in terms of delay and capacity, as long as an SU has a positive probability to access the spectrum. Furthermore, we extend ADDC to deal with the continuous data collection issue, and analyze the delay and capacity performances of ADDC for continuous data collection, which are also proven to be order-optimal. Finally, extensive simulation results indicate that ADDC can effectively accomplish a data collection task and significantly reduce data collection delay

    Impact of the Location of CpG Methylation within the GSTP1 Gene on Its Specificity as a DNA Marker for Hepatocellular Carcinoma

    Get PDF
    Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found that the 5â€Č region of the position −48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3â€Č region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3â€Č region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5â€Č region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3â€Č region, we found that the methylation of the 5â€Č-end of the GSTP1 promoter was significantly more specific than that of the 3â€Č-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
    • 

    corecore