46 research outputs found

    Giving formulary and drug cost information to providers and impact on medication cost and use: a longitudinal non-randomized study

    Get PDF
    BackgroundProviders wish to help patients with prescription costs but often lack drug cost information. We examined whether giving providers formulary and drug cost information was associated with changes in their diabetes patients' drug costs and use. We conducted a longitudinal non-randomized evaluation of the web-based Prescribing Guide ( www.PrescribingGuide.com ), a free resource available to Hawaii's providers since 2006, which summarizes the formularies and copayments of six health plans for drugs to treat 16 common health conditions. All adult primary care physicians in Hawaii were offered the Prescribing Guide, and providers who enrolled received a link to the website and regular hardcopy updates.MethodsWe analyzed prescription claims from a large health plan in Hawaii for 5,883 members with diabetes from 2007 (baseline) to 2009 (follow-up). Patients were linked to 299 "main prescribing" providers, who on average, accounted for >88 % of patients' prescriptions and drug costs. We compared changes in drug costs and use for "study" patients whose main provider enrolled to receive the Prescribing Guide, versus "control" patients whose main provider did not enroll to receive the Prescribing Guide.ResultsIn multivariate analyses controlling for provider specialty and clustering of patients by providers, both patient groups experienced similar increases in number of prescriptions (+3.2 vs. +2.7 increase, p = 0.24), and days supply of medications (+141 vs. +129 increase, p = 0.40) averaged across all drugs. Total and out-of-pocket drug costs also increased for both control and study patients. However, control patients showed higher increases in yearly total drug costs of 208perpatient(+208 per patient (+792 vs. +584increase,p = 0.02)andin30−daysupplycosts(+584 increase, p = 0.02) and in 30-day supply costs (+9.40 vs. +6.08increase,p = 0.03).Bothgroupsexperiencedsimilarchangesinyearlyout−of−pocketcosts(+6.08 increase, p = 0.03). Both groups experienced similar changes in yearly out-of-pocket costs (+41 vs + 31increase,p = 0.36)andper30−daysupply(−31 increase, p = 0.36) and per 30-day supply (-0.23 vs. -$0.19 decrease, p = 0.996).ConclusionGiving formulary and drug cost information to providers was associated with lower increases in total drug costs but not with lower out-of-pocket costs or greater medication use. Insurers and health information technology businesses should continue to increase providers' access to formulary and drug cost information at the point of care

    Gender-specific association between blood cell parameters and hyperuricemia in high-altitude areas

    Get PDF
    BackgroundHyperuricemia is a common metabolic disorder linked to various health conditions. Its prevalence varies among populations and genders, and high-altitude environments may contribute to its development. Understanding the connection between blood cell parameters and hyperuricemia in high-altitude areas can shed light on the underlying mechanisms. This study aimed to investigate the relationship between blood cell parameters and hyperuricemia in high-altitude areas, with a particular focus on gender differences.MethodsWe consecutively enrolled all eligible Tibetan participants aged 18–60 who were undergoing routine medical examinations at the People’s Hospital of Chaya County between January and December 2022. During this period, demographic and laboratory data were collected to investigate the risk factors associated with hyperuricemia.ResultsAmong the participants, 46.09% were diagnosed with hyperuricemia. In the male cohort, significant correlations were found between serum uric acid (SUA) levels and red blood cell (RBC) count, creatinine (Cr). Urea, alanine transaminase (ALT), and albumin (ALB). Notably, RBC exhibited the strongest association. Conversely, in the female cohort, elevated SUA levels were associated with factors such as white blood cell (WBC) count. Urea, ALT, and ALB, with WBC demonstrating the most significant association. Further analysis within the female group revealed a compelling relationship between SUA levels and specific white blood cell subtypes, particularly neutrophils (Neu).ConclusionThis study revealed gender-specific associations between SUA levels and blood cell parameters in high-altitude areas. In males, RBC count may play a role in hyperuricemia, while in females, WBC count appears to be a significant factor. These findings contribute to our understanding of metabolic dynamics in high-altitude regions but require further research for comprehensive mechanistic insights

    Complex Dynamics Analysis of a Discrete Amensalism System with a Cover for the First Species

    No full text
    Of interest is the dynamics of the discrete-time amensalism model with a cover on the first species. We first obtain the existence and stability of fixed points and the conditions for the permanent coexistence of two species. Then we demonstrate the occurrence of flip bifurcation by using the central manifold theorem and bifurcation theory. A hybrid control strategy is used to control the flip bifurcation and stabilize unstable periodic orbits embedded in the complex attractor. Numerical simulation verifies the feasibility of theoretical analysis and reveals some novel and exciting dynamic phenomena

    Investigation of the spatial heterogeneity of soil microbial biomass carbon and nitrogen under long-term fertilizations in fluvo-aquic soil.

    No full text
    Soils are heterogeneous and microbial spatial distribution can clearly indicate the spatial characteristics of the soil carbon and nitrogen cycle. However, it is not clear how long-term fertilization affects the spatial distribution of microbial biomass in fluvo-aquic soil. We collected fluvo-aquic soil samples (topsoil 0-7.5 cm and sub-topsoil 7.5-20 cm) using a spatially-explicit design within three 40.5 m2 plots in each of four fertilization treatments. Fertilization treatments were: cropping without fertilizer inputs (CK); chemical nitrogen, phosphorus, and potassium fertilizer (NPK); chemical fertilizer with straw return (NPKS); and chemical fertilizer with animal manure (NPKM). Variables included soil microbial biomass carbon (MBC) and nitrogen (MBN), and MBC/MBN. For both soil layers, we hypothesized that: microbial biomass was lowest in CK but with the largest spatial heterogeneity; and microbial biomass was highest in NPKM and NPKS but with the lowest spatial heterogeneity. Results showed that: (1) Fertilization significantly increased MBC and MBN more in topsoil than sub-topsoil but had no MBC/MBN changes. (2) The coefficient of variation (CV) and Cochran's C showed that variation was largest in CK in topsoil and NPK in sub-topsoil and that variation of topsoil was generally lower than in sub-topsoil. The sample size of the three variables was largest in CK in topsoil but had little variation among the other treatments. (3) The trend-surface model showed that within-plot heterogeneity varied substantially with fertilization (NPKM = NPK > NPKS > CK), but Moran's I and the interpolation map showed that spatial variability with fertilization followed the order NPK > NPKS > CK = NPKM at a fine scale in topsoil. In sub-topsoil, the trend-surface model showed that within-plot heterogeneity followed the order NPKM = CK > NPK > NPKS and that the fine-scale pattern was NPKM>NPK = NPKS>CK. MBC had the highest spatial heterogeneity among the three variables in both soil layers. Our results indicate that the application of organic fertilizer (straw or manure) reduced the variation of MBC and MBN but increased the spatial variability of MBC and MBN. The spatial variation of the three variables was MBC > MBN > MBC/MBN regardless of whether variation was considered at the plot-scale or the fine-scale in both layers

    Decrease in diversity and shift in composition of the soil bacterial community were closely related to high available phosphorus in agricultural Fluvisols of North China

    No full text
    Our objectives were to investigate whether AP affects the soil bacterial community composition and diversity in high-level available phosphorus (AP) soils. The bacterial community was analysed through high-throughput sequencing using the Illumina MiSeq platform. Fifteen soils, including barren land, cropland and greenhouse soils which were sandy loam Fluvisols, were selected from different fields in Beijing, China, with AP contents ranging from 5.03 to 391.45 mg kg−1. Statistical analyses revealed high AP (>100 mg kg−1) decreased alpha diversity (Shannon’s index, H’) but not beta diversity of the soil bacterial community. The sequencing of 16S rRNA genes showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla in sandy loam Fluvisols. AP, soil organic carbon (SOC) and total nitrogen (TN) had synergistic influence on the shift of the bacterial community composition. Moreover, AP was the main driving factor affecting the soil bacterial community composition compared with other environmental factors. The members of the Proteobacteria, Bacteroidetes and Actinobacteria belonging to copiotrophic taxa typically increased in relative abundance in high-P soils, while oligotrophic taxa (mainly Acidobacteria) decreased in relative abundance. Our results demonstrated that the bacterial community composition would shift from oligotrophic to copiotrophic with increasing levels of AP

    Biochar Amends Saline Soil and Enhances Maize Growth: Three-Year Field Experiment Findings

    No full text
    Soil salinization is a significant obstacle to agricultural development in arid and semiarid regions. While short-term experiments have demonstrated the effective improvement of saline soils through biochar amendment, the long-term efficacy in sustainably ameliorating such soils remains uncertain. Addressing this knowledge gap, this study investigated the long-term effects of biochar amendment in a field setting by applying different rates of biochar to a salt-affected soil and cultivating silage maize for three consecutive years. The comprehensive assessment includes not only maize growth but also changes in soil physical and chemical properties over the study period. The results reveal a notable elevation in maize above-ground dry matter, directly correlated to the enhanced uptake of nitrogen, phosphorous, and potassium. Additionally, biochar application improves saline soil physical properties, including reduced bulk density (1–23%), increased soil large pores (0.7–12%), and macroaggregates (24–141%), and chemical properties, including a decrease in exchangeable sodium percentage (35–48%), and an increase in soil total organic carbon (112–857%), total nitrogen (9–198%), available nitrogen (12–49%), phosphorus (141–538%) and potassium (57–895%). These improvements ultimately resulted in better maize growth. However, the amelioration effect of biochar on these soil properties gradually diminished over the three-year study. Consequently, this study suggests that biochar is a promising soil amendment that can enhance maize growth in saline soil for at least three years in a field experiment, providing valuable insights for sustainable agricultural practices in salt-affected regions

    Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition

    No full text
    Biochar application can improve soil properties, such as increasing soil organic carbon content, soil pH and water content. These properties are important to soil dissolved organic carbon (DOC); however, the effects of biochar on DOC concentration and composition have received little research attention, especially several years after biochar application under field conditions. This study was conducted in a long-term experimental field where the biochar was only applied once in 2009. The purpose of the study was to investigate the effect of different biochar application rates (0, 30, 60 and 90 t ha-1) on the dynamics of soil water content, DOC concentration and DOC compositions (reducing sugar, soluble phenol and aromatics) over nine samplings during a 12-month period in 2014. Our results showed that soil water content and DOC concentration varied from 7.1% to 14.5% and 59 to 230 mg C kg-1 soil during the 12 months, respectively. However, the biochar application rates did not significantly (p > 0.05) affect soil water content, DOC concentration and DOC composition at the same sampling period. The DOC concentration across the biochar treatments was positively correlated to soil water content. Moreover, the DOC composition (reducing sugar, soluble phenol or aromatics) and their concentrations were positively correlated to the total DOC concentration. In addition, biochar did not affect soil bulk density, pH, saturated hydraulic conductivity and crop yields. The results indicated that some benefits of biochar to soil may not persist 5 years after the application of biochar under a field condition. 0.05) affect soil water content, DOC concentration and DOC composition at the same sampling period. The DOC concentration across the biochar treatments was positively correlated to soil water content. Moreover, the DOC composition (reducing sugar, soluble phenol or aromatics) and their concentrations were positively correlated to the total DOC concentration. In addition, biochar did not affect soil bulk density, pH, saturated hydraulic conductivity and crop yields. The results indicated that some benefits of biochar to soil may not persist 5 years after the application of biochar under a field condition

    The Sewage Sludge Biochar at Low Pyrolysis Temperature Had Better Improvement in Urban Soil and Turf Grass

    No full text
    In recent years, continuous efforts have been made to understand the impact of biochar on arable soil fertility. Little is known about whether the biochar derived from municipal sewage sludge has positive impacts on urban soil. In this study, we pyrolyzed spray-dried municipal sewage sludge at 200 °C, 300 °C, 500 °C, and 700 °C for 2 h in a muffle furnace and then amended it into an urban soil to grow turf grass in pots. The outcomes demonstrated that biochar incorporation caused remarkable increases in soil organic C, black C, total N, available P, and K by 3–8, 7–25, 2–9, 10–19, and 1.4–2 times, respectively. The dry matter of turf grass increased by 43–147%, probably due to the nutritional improvement after biochar addition. The turf grass grown in biochar-added soil had 4–70% lower heavy metals than that in the control, although the soils had much higher total heavy metals, which might imply that biochar amendment reduced the bioavailability of heavy metals. Considering the cost of biochar production and its impacts on both urban soil and grass, it would be alternative to convert the spray-dried municipal sewage sludge into biochar at 200 °C for 2 h and then used as an urban soil amendment

    Caspase-1 Inhibition Reduces Occurrence of PANoptosis in Macrophages Infected by E. faecalis OG1RF

    No full text
    To investigate the effect of caspase-1 inhibition on PANoptosis in macrophages infected with Enterococcus faecalis OG1RF. RAW264.7 cells with and without pretreatment by caspase-1 inhibitor were infected with E. faecalis OG1RF at multiplicities of infection (MOIs). A live cell imaging analysis system and Western blot were applied to evaluate the dynamic curve of cell death and the expression of executor proteins of PANoptosis. The mRNA expression of IL-1β and IL-18 was quantified by RT-qPCR. Morphological changes were observed under scanning electron microscopy. We found that PI-positive cells emerged earlier and peaked at a faster rate in E. faecalis-infected macrophages (Ef-MPs) at higher MOIs. The expression of the N-terminal domain of the effector protein gasdermin D (GSDMD-N), cleaved caspase-3 and pMLKL were significantly upregulated at MOIs of 10:1 at 6 h and at MOI of 1:1 at 12 h postinfection. In Ef-MPs pretreated with caspase-1 inhibitor, the number of PI-positive cells was significantly reduced, and the expression of IL-1β and IL-18 genes and cleaved caspase-1/-3 and GSDMD-N proteins was significantly downregulated (p < 0.05), while pMLKL was still markedly increased (p < 0.05). Ef-MPs remained relatively intact with caspase-1 inhibitor. In conclusion, E. faecalis induced cell death in macrophages in an MOI-dependent manner. Caspase-1 inhibitor simultaneously inhibited pyroptosis and apoptosis in Ef-MPs, but necroptosis still occurred
    corecore