40 research outputs found

    Two-Pathway Style Embedding for Arbitrary Voice Conversion

    Get PDF

    Derivation of human embryonic stem cell from spinal muscular atrophy patient

    Get PDF
    We established a human embryonic stem cell (hESC) line chHES-427 from the abnormal embryo carrying homozygous deletion of exon 7 of survival motor neuron gene (SMN). This cell line maintained a normal karyotype 46, XX during long-term culture. Further characteristic analysis suggested that the cells expressed the pluripotency-related markers and had the capacity to differentiate into the derivatives from the three germ layers in vitro

    The dynamic changes of X chromosome inactivation during early culture of human embryonic stem cells

    No full text
    X chromosome inactivation (XCI) is required for dosage compensation of X-linked genes in human female cells. Several previous reports have described the promiscuous XCI status in long-term cultured female human embryonic stem cells (hESCs), and the majority of them exhibit non-random XCI. However, when and how such female hESCs acquire the aberrant XCI states during culture is unknown. Herein, through comparing the XCI states in 18 paired hES cell lines throughout early culture, we revealed a uniform dynamic change during this culture period under a widely used culture condition. The female initial hESCs (ihESCs, P4-P9) expressed XIST RNA, H3K27me3 punctate enrichment and displayed random XCI pattern. By further culturing, the female early hESCs (ehESCs, P20–P30) lost the expression of XIST RNA, H3K27me3 punctate enrichment and exhibited a completely skewed XCI pattern. Importantly, a subset of X-linked genes was up-regulated in ehESCs, including some cancer-related genes. At last, we found 5% physiological oxygen was beneficial for the expression of XIST and H3K27me3 punctate enrichment, but not for the XCI pattern. We conclude that the XCI dynamic change is a frequent epigenetic instability event during early culture, which is accompanied by the up-regulation of some X-linked genes. Furthermore, we emphasize that physiological oxygen is beneficial for XCI fidelity

    Exploring the efficacy and beneficial population of preimplantation genetic testing for aneuploidy start from the oocyte retrieval cycle: a real-world study

    No full text
    Abstract Background Preimplantation genetic testing for aneuploidy (PGT-A) is widely used as an embryo selection technique in in vitro fertilization (IVF), but its effectiveness and potential beneficiary populations are unclear. Methods This retrospective cohort study included patients who underwent their first oocyte retrieval cycles at CITIC-Xiangya between January 2016 and November 2019, and the associated fresh and thawed embryo transfer cycles up to November 30, 2020. PGT-A (PGT-A group) and intracytoplasmic sperm injection (ICSI)/IVF (non-PGT-A group) cycles were included. The numbers of oocytes and embryos obtained were unrestricted. In total, 60,580 patients were enrolled, and baseline data were matched between groups using 1:3 propensity score matching. Sensitivity analyses, including propensity score stratification and traditional multivariate logistic regression, were performed on the original unmatched cohort to check the robustness of the overall results. Analyses were stratified by age, body mass index, ovarian reserve/responsiveness, and potential indications to explore benefits in subgroups. The primary outcome was cumulative live birth rate (CLBR). The other outcomes included live birth rate (LBR), pregnancy loss rate, clinical pregnancy rate, pregnancy complications, low birth weight rate, and neonatal malformation rate. Results In total, 4195 PGT-A users were matched with 10,140 non-PGT-A users. A significant reduction in CLBR was observed in women using PGT-A (27.5% vs. 31.1%; odds ratio (OR) = 0.84, 95% confidence interval (CI) 0.78–0.91; P < 0.001). However, women using PGT-A had higher first-transfer pregnancy (63.9% vs. 46.9%; OR = 2.01, 95% CI 1.81–2.23; P < 0.001) and LBR (52.6% vs. 34.2%, OR = 2.13, 95% CI 1.92–2.36; P < 0.001) rates and lower rates of early miscarriage (12.8% vs. 20.2%; OR = 0.58, 95% CI 0.48–0.70; P < 0.001), preterm birth (8.6% vs 17.3%; P < 0.001), and low birth weight (4.9% vs. 19.3%; P < 0.001). Moreover, subgroup analyses revealed that women aged ≥ 38 years, diagnosed with recurrent pregnancy loss or intrauterine adhesions benefited from PGT-A, with a significant increase in first-transfer LBR without a decrease in CLBR. Conclusion PGT-A does not increase and decrease CLBR per oocyte retrieval cycle; nonetheless, it is effective in infertile populations with specific indications. PGT-A reduces complications associated with multiple gestations
    corecore