60 research outputs found

    Towards Optimal Discrete Online Hashing with Balanced Similarity

    Full text link
    When facing large-scale image datasets, online hashing serves as a promising solution for online retrieval and prediction tasks. It encodes the online streaming data into compact binary codes, and simultaneously updates the hash functions to renew codes of the existing dataset. To this end, the existing methods update hash functions solely based on the new data batch, without investigating the correlation between such new data and the existing dataset. In addition, existing works update the hash functions using a relaxation process in its corresponding approximated continuous space. And it remains as an open problem to directly apply discrete optimizations in online hashing. In this paper, we propose a novel supervised online hashing method, termed Balanced Similarity for Online Discrete Hashing (BSODH), to solve the above problems in a unified framework. BSODH employs a well-designed hashing algorithm to preserve the similarity between the streaming data and the existing dataset via an asymmetric graph regularization. We further identify the "data-imbalance" problem brought by the constructed asymmetric graph, which restricts the application of discrete optimization in our problem. Therefore, a novel balanced similarity is further proposed, which uses two equilibrium factors to balance the similar and dissimilar weights and eventually enables the usage of discrete optimizations. Extensive experiments conducted on three widely-used benchmarks demonstrate the advantages of the proposed method over the state-of-the-art methods.Comment: 8 pages, 11 figures, conferenc

    SMMix: Self-Motivated Image Mixing for Vision Transformers

    Full text link
    CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs). However, the inconsistency between the mixed images and the corresponding labels harms its efficacy. Existing CutMix variants tackle this problem by generating more consistent mixed images or more precise mixed labels, but inevitably introduce heavy training overhead or require extra information, undermining ease of use. To this end, we propose an efficient and effective Self-Motivated image Mixing method (SMMix), which motivates both image and label enhancement by the model under training itself. Specifically, we propose a max-min attention region mixing approach that enriches the attention-focused objects in the mixed images. Then, we introduce a fine-grained label assignment technique that co-trains the output tokens of mixed images with fine-grained supervision. Moreover, we devise a novel feature consistency constraint to align features from mixed and unmixed images. Due to the subtle designs of the self-motivated paradigm, our SMMix is significant in its smaller training overhead and better performance than other CutMix variants. In particular, SMMix improves the accuracy of DeiT-T/S, CaiT-XXS-24/36, and PVT-T/S/M/L by more than +1% on ImageNet-1k. The generalization capability of our method is also demonstrated on downstream tasks and out-of-distribution datasets. Code of this project is available at https://github.com/ChenMnZ/SMMix

    I&S-ViT: An Inclusive & Stable Method for Pushing the Limit of Post-Training ViTs Quantization

    Full text link
    Albeit the scalable performance of vision transformers (ViTs), the dense computational costs (training & inference) undermine their position in industrial applications. Post-training quantization (PTQ), tuning ViTs with a tiny dataset and running in a low-bit format, well addresses the cost issue but unluckily bears more performance drops in lower-bit cases. In this paper, we introduce I&S-ViT, a novel method that regulates the PTQ of ViTs in an inclusive and stable fashion. I&S-ViT first identifies two issues in the PTQ of ViTs: (1) Quantization inefficiency in the prevalent log2 quantizer for post-Softmax activations; (2) Rugged and magnified loss landscape in coarse-grained quantization granularity for post-LayerNorm activations. Then, I&S-ViT addresses these issues by introducing: (1) A novel shift-uniform-log2 quantizer (SULQ) that incorporates a shift mechanism followed by uniform quantization to achieve both an inclusive domain representation and accurate distribution approximation; (2) A three-stage smooth optimization strategy (SOS) that amalgamates the strengths of channel-wise and layer-wise quantization to enable stable learning. Comprehensive evaluations across diverse vision tasks validate I&S-ViT' superiority over existing PTQ of ViTs methods, particularly in low-bit scenarios. For instance, I&S-ViT elevates the performance of 3-bit ViT-B by an impressive 50.68%

    Representation Disparity-aware Distillation for 3D Object Detection

    Full text link
    In this paper, we focus on developing knowledge distillation (KD) for compact 3D detectors. We observe that off-the-shelf KD methods manifest their efficacy only when the teacher model and student counterpart share similar intermediate feature representations. This might explain why they are less effective in building extreme-compact 3D detectors where significant representation disparity arises due primarily to the intrinsic sparsity and irregularity in 3D point clouds. This paper presents a novel representation disparity-aware distillation (RDD) method to address the representation disparity issue and reduce performance gap between compact students and over-parameterized teachers. This is accomplished by building our RDD from an innovative perspective of information bottleneck (IB), which can effectively minimize the disparity of proposal region pairs from student and teacher in features and logits. Extensive experiments are performed to demonstrate the superiority of our RDD over existing KD methods. For example, our RDD increases mAP of CP-Voxel-S to 57.1% on nuScenes dataset, which even surpasses teacher performance while taking up only 42% FLOPs.Comment: Accepted by ICCV2023. arXiv admin note: text overlap with arXiv:2205.15156 by other author

    Spatial Re-parameterization for N:M Sparsity

    Full text link
    This paper presents a Spatial Re-parameterization (SpRe) method for the N:M sparsity in CNNs. SpRe is stemmed from an observation regarding the restricted variety in spatial sparsity present in N:M sparsity compared with unstructured sparsity. Particularly, N:M sparsity exhibits a fixed sparsity rate within the spatial domains due to its distinctive pattern that mandates N non-zero components among M successive weights in the input channel dimension of convolution filters. On the contrary, we observe that unstructured sparsity displays a substantial divergence in sparsity across the spatial domains, which we experimentally verified to be very crucial for its robust performance retention compared with N:M sparsity. Therefore, SpRe employs the spatial-sparsity distribution of unstructured sparsity to assign an extra branch in conjunction with the original N:M branch at training time, which allows the N:M sparse network to sustain a similar distribution of spatial sparsity with unstructured sparsity. During inference, the extra branch can be further re-parameterized into the main N:M branch, without exerting any distortion on the sparse pattern or additional computation costs. SpRe has achieved a commendable feat by matching the performance of N:M sparsity methods with state-of-the-art unstructured sparsity methods across various benchmarks. Code and models are anonymously available at \url{https://github.com/zyxxmu/SpRe}.Comment: 11 pages, 4 figure

    Knowledge Condensation Distillation

    Full text link
    Knowledge Distillation (KD) transfers the knowledge from a high-capacity teacher network to strengthen a smaller student. Existing methods focus on excavating the knowledge hints and transferring the whole knowledge to the student. However, the knowledge redundancy arises since the knowledge shows different values to the student at different learning stages. In this paper, we propose Knowledge Condensation Distillation (KCD). Specifically, the knowledge value on each sample is dynamically estimated, based on which an Expectation-Maximization (EM) framework is forged to iteratively condense a compact knowledge set from the teacher to guide the student learning. Our approach is easy to build on top of the off-the-shelf KD methods, with no extra training parameters and negligible computation overhead. Thus, it presents one new perspective for KD, in which the student that actively identifies teacher's knowledge in line with its aptitude can learn to learn more effectively and efficiently. Experiments on standard benchmarks manifest that the proposed KCD can well boost the performance of student model with even higher distillation efficiency. Code is available at https://github.com/dzy3/KCD.Comment: ECCV202

    SiMaN: Sign-to-Magnitude Network Binarization

    Full text link
    Binary neural networks (BNNs) have attracted broad research interest due to their efficient storage and computational ability. Nevertheless, a significant challenge of BNNs lies in handling discrete constraints while ensuring bit entropy maximization, which typically makes their weight optimization very difficult. Existing methods relax the learning using the sign function, which simply encodes positive weights into +1s, and -1s otherwise. Alternatively, we formulate an angle alignment objective to constrain the weight binarization to {0,+1} to solve the challenge. In this paper, we show that our weight binarization provides an analytical solution by encoding high-magnitude weights into +1s, and 0s otherwise. Therefore, a high-quality discrete solution is established in a computationally efficient manner without the sign function. We prove that the learned weights of binarized networks roughly follow a Laplacian distribution that does not allow entropy maximization, and further demonstrate that it can be effectively solved by simply removing the â„“2\ell_2 regularization during network training. Our method, dubbed sign-to-magnitude network binarization (SiMaN), is evaluated on CIFAR-10 and ImageNet, demonstrating its superiority over the sign-based state-of-the-arts. Our source code, experimental settings, training logs and binary models are available at https://github.com/lmbxmu/SiMaN
    • …
    corecore