491 research outputs found

    Multimodal Convolutional Neural Networks for Matching Image and Sentence

    Full text link
    In this paper, we propose multimodal convolutional neural networks (m-CNNs) for matching image and sentence. Our m-CNN provides an end-to-end framework with convolutional architectures to exploit image representation, word composition, and the matching relations between the two modalities. More specifically, it consists of one image CNN encoding the image content, and one matching CNN learning the joint representation of image and sentence. The matching CNN composes words to different semantic fragments and learns the inter-modal relations between image and the composed fragments at different levels, thus fully exploit the matching relations between image and sentence. Experimental results on benchmark databases of bidirectional image and sentence retrieval demonstrate that the proposed m-CNNs can effectively capture the information necessary for image and sentence matching. Specifically, our proposed m-CNNs for bidirectional image and sentence retrieval on Flickr30K and Microsoft COCO databases achieve the state-of-the-art performances.Comment: Accepted by ICCV 201

    Strategies for High Resolution Patterning of Conducting Polymers

    Get PDF

    Statistical methods for meta-analysis

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2017. Major: Biostatistics. Advisor: Haitao Chu. 1 computer file (PDF); xi, 166 pages.Meta-analysis has become a widely-used tool to combine findings from independent studies in various research areas. This thesis deals with several important statistical issues in systematic reviews and meta-analyses, such as assessing heterogeneity in the presence of outliers, quantifying publication bias, and simultaneously synthesizing multiple treatments and factors. The first part of this thesis focuses on univariate meta-analysis. We propose alternative measures to robustly describe between-study heterogeneity, which are shown to be less affected by outliers compared with traditional measures. Publication bias is another issue that can seriously affect the validity and generalizability of meta-analysis conclusions. We present the first work to empirically evaluate the performance of seven commonly-used publication bias tests based on a large collection of actual meta-analyses in the Cochrane Library. Our findings may guide researchers in properly assessing publication bias and interpreting test results for future systematic reviews. Moreover, instead of just testing for publication bias, we further consider quantifying it and propose an intuitive publication bias measure, called the skewness of standardized deviates, which effectively describes the asymmetry of the collected studies’ results. The measure’s theoretical properties are studied, and we show that it can also serve as a powerful test statistic. The second part of this thesis introduces novel ideas in multivariate meta-analysis. In medical sciences, a disease condition is typically associated with multiple risk and protective factors. Although many studies report results of multiple factors, nearly all meta-analyses separately synthesize the association between each factor and the disease condition of interest. We propose a new concept, multivariate meta-analysis of multiple factors, to synthesize all available factors simultaneously using a Bayesian hierarchical model. By borrowing information across factors, the multivariate method can improve statistical efficiency and reduce biases compared with separate analyses. In addition to synthesizing multiple factors, network meta-analysis has recently attracted much attention in evidence-based medicine because it simultaneously combines both direct and indirect evidence to compare multiple treatments and thus facilitates better decision making. First, we empirically compare two network meta-analysis models, contrast- and arm-based, with respect to their sensitivity to treatment exclusions. The arm-based method is shown to be more robust to such exclusions, mostly because it can use single-arm studies while the contrast-based method cannot. Then, focusing on the currently popular contrast-based method, we theoretically explore the key factors that make network meta-analysis outperform traditional pairwise meta-analyses. We prove that evidence cycles in the treatment network play critical roles in network meta-analysis. Specifically, network meta-analysis produces posterior distributions identical to separate pairwise meta-analyses for all treatment comparisons when a treatment network does not contain cycles. This equivalence is illustrated using simulations and a case study

    Spatial-spectral Terahertz Networks

    Get PDF
    This paper focuses on the spatial-spectral terahertz (THz) networks, where transmitters equipped with leaky-wave antennas send information to their receivers at the THz frequency bands. As a directional and nearly planar antenna, the leaky-wave antenna allows for information transmissions with narrow beams and high antenna gains. The conventional large antenna arrays are confronted with challenging issues such as scaling limits and path discovery in the THz frequencies. Therefore, this work exploits the potential of leaky-wave antennas in the dense THz networks, to establish low-complexity THz links. By addressing the propagation angle-frequency coupling effects, the transmission rate is analyzed. The results show that the leaky-wave antenna is efficient for achieving the high-speed transmission rate. The co-channel interference management is unnecessary when the THz transmitters with large subchannel bandwidths are not extremely dense. A simple subchannel allocation solution is proposed, which enhances the transmission rate compared with the same number of subchannels with the equal allocation of the frequency band. After subchannel allocation, a low-complexity power allocation method is proposed to improve the energy efficiency.Comment: accepted by the IEEE Transactions on Wireless Communication

    High-Precision Channel Estimation for Sub-Noise Self-Interference Cancellation

    Full text link
    Self-interference cancellation plays a crucial role in achieving reliable full-duplex communications. In general, it is essential to cancel the self-interference signal below the thermal noise level, which necessitates accurate reconstruction of the self-interference signal. In this paper, we propose a high-precision channel estimation method specifically designed for sub-noise self-interference cancellation. Exploiting the fact that all transmitted symbols are known to their respective receivers, our method utilizes all transmitted symbols for self-interference channel estimation. Through analytical derivations and numerical simulations, we validate the effectiveness of the proposed method. The results demonstrate the superior performance of our approach in achieving sub-noise self-interference cancellation
    • …
    corecore