50 research outputs found

    Multi-granularity Item-based Contrastive Recommendation

    Full text link
    Contrastive learning (CL) has shown its power in recommendation. However, most CL-based recommendation models build their CL tasks merely focusing on the user's aspects, ignoring the rich diverse information in items. In this work, we propose a novel Multi-granularity item-based contrastive learning (MicRec) framework for the matching stage (i.e., candidate generation) in recommendation, which systematically introduces multi-aspect item-related information to representation learning with CL. Specifically, we build three item-based CL tasks as a set of plug-and-play auxiliary objectives to capture item correlations in feature, semantic and session levels. The feature-level item CL aims to learn the fine-grained feature-level item correlations via items and their augmentations. The semantic-level item CL focuses on the coarse-grained semantic correlations between semantically related items. The session-level item CL highlights the global behavioral correlations of items from users' sequential behaviors in all sessions. In experiments, we conduct both offline and online evaluations on real-world datasets, verifying the effectiveness and universality of three proposed CL tasks. Currently, MicRec has been deployed on a real-world recommender system, affecting millions of users. The source code will be released in the future.Comment: 17 pages, under revie

    Reweighting Clicks with Dwell Time in Recommendation

    Full text link
    The click behavior is the most widely-used user positive feedback in recommendation. However, simply considering each click equally in training may suffer from clickbaits and title-content mismatching, and thus fail to precisely capture users' real satisfaction on items. Dwell time could be viewed as a high-quality quantitative indicator of user preferences on each click, while existing recommendation models do not fully explore the modeling of dwell time. In this work, we focus on reweighting clicks with dwell time in recommendation. Precisely, we first define a new behavior named valid read, which helps to select high-quality click instances for different users and items via dwell time. Next, we propose a normalized dwell time function to reweight click signals in training, which could better guide our model to provide a high-quality and efficient reading. The Click reweighting model achieves significant improvements on both offline and online evaluations in a real-world system.Comment: 5 pages, under revie

    Graph Exploration Matters: Improving both individual-level and system-level diversity in WeChat Feed Recommender

    Full text link
    There are roughly three stages in real industrial recommendation systems, candidates generation (retrieval), ranking and reranking. Individual-level diversity and system-level diversity are both important for industrial recommender systems. The former focus on each single user's experience, while the latter focus on the difference among users. Graph-based retrieval strategies are inevitably hijacked by heavy users and popular items, leading to the convergence of candidates for users and the lack of system-level diversity. Meanwhile, in the reranking phase, Determinantal Point Process (DPP) is deployed to increase individual-level diverisity. Heavily relying on the semantic information of items, DPP suffers from clickbait and inaccurate attributes. Besides, most studies only focus on one of the two levels of diversity, and ignore the mutual influence among different stages in real recommender systems. We argue that individual-level diversity and system-level diversity should be viewed as an integrated problem, and we provide an efficient and deployable solution for web-scale recommenders. Generally, we propose to employ the retrieval graph information in diversity-based reranking, by which to weaken the hidden similarity of items exposed to users, and consequently gain more graph explorations to improve the system-level diveristy. Besides, we argue that users' propensity for diversity changes over time in content feed recommendation. Therefore, with the explored graph, we also propose to capture the user's real-time personalized propensity to the diversity. We implement and deploy the combined system in WeChat App's Top Stories used by hundreds of millions of users. Offline simulations and online A/B tests show our solution can effectively improve both user engagement and system revenue

    Multi-Granularity Click Confidence Learning via Self-Distillation in Recommendation

    Full text link
    Recommendation systems rely on historical clicks to learn user interests and provide appropriate items. However, current studies tend to treat clicks equally, which may ignore the assorted intensities of user interests in different clicks. In this paper, we aim to achieve multi-granularity Click confidence Learning via Self-Distillation in recommendation (CLSD). Due to the lack of supervised signals in click confidence, we first apply self-supervised learning to obtain click confidence scores via a global self-distillation method. After that, we define a local confidence function to adapt confidence scores at the user group level, since the confidence distributions can be varied among user groups. With the combination of multi-granularity confidence learning, we can distinguish the quality of clicks and model user interests more accurately without involving extra data and model structures. The significant improvements over different backbones on industrial offline and online experiments in a real-world recommender system prove the effectiveness of our model. Recently, CLSD has been deployed on a large-scale recommender system, affecting over 400 million users

    Neural Snowball for Few-Shot Relation Learning

    Full text link
    Knowledge graphs typically undergo open-ended growth of new relations. This cannot be well handled by relation extraction that focuses on pre-defined relations with sufficient training data. To address new relations with few-shot instances, we propose a novel bootstrapping approach, Neural Snowball, to learn new relations by transferring semantic knowledge about existing relations. More specifically, we use Relational Siamese Networks (RSN) to learn the metric of relational similarities between instances based on existing relations and their labeled data. Afterwards, given a new relation and its few-shot instances, we use RSN to accumulate reliable instances from unlabeled corpora; these instances are used to train a relation classifier, which can further identify new facts of the new relation. The process is conducted iteratively like a snowball. Experiments show that our model can gather high-quality instances for better few-shot relation learning and achieves significant improvement compared to baselines. Codes and datasets are released on https://github.com/thunlp/Neural-Snowball.Comment: Accepted by AAAI202
    corecore