18 research outputs found

    Comparative Analysis Between Fly Ash Geopolymer and Reactive Ultra-Fine Fly Ash Geopolymer

    Get PDF
    This study investigates novel geopolymers by combining Reactive Ultra-fine Fly Ash (RUFA) with 4M sodium hydroxide as an alkali activator. Comparing with general fly ash geopolymers, RUFA geopolymer pastes are characterized in terms of compressive strength, microstructure, and crystalline phases. The RUFA geopolymer is successfully obtained as alumina-silicate bonding materials with the same properties as the general fly ash-based geopolymer. The high compressive strength of the RUFA-based geopolymer samples (13.33 MPa) can be attributed primarily to Ca-based alumino-silicate hydration products and Na-based alumino-silicate complexes. This research  presents an innovative application for geopolymers using RUFA. In the follow-up study, the influence of synthesis and concentration of alkali activator can be considered in RUFA-based geopolymers

    Hydration characteristics of waste sludge ash utilized as raw cement material,”

    Get PDF
    Abstract In this study, the hydration characteristics and the engineering properties of three types of eco-cement pastes, including their compressive strength, speciation, degree of hydration, and microstructure, were studied and compared with those of ASTM type I ordinary Portland cement. The results indicate that it is feasible to use sludge ash and steel-making waste to replace up to 20% of the mineral components of the raw material of cement. Furthermore, all the tested clinkers met the toxicity characteristic leaching procedure requirements. The major components of Portland cement, C 3 S (i.e., 3CaOISiO 2 ), C 2 S (i.e., 2CaOISiO 2 ), C 3 A (i.e., 3CaOAl 2 O 3 ) and C 4 AF (i.e., 4CaOIAl 2 O 3 IFe 2 O 3 ), were all found in the waste-derived clinkers. All three types of eco-cements were confirmed to produce calcium hydroxide (Ca(OH) 2 ) and calcium silicate hydrates (CSH) during the hydration process, increasing densification with the curing age. The thermal analysis results indicate that the hydration proceeded up to 90 days, with the amount of Ca(OH) 2 and CSH increasing. The chemical shift of the silicates, and the resultant degree of hydration, and the increase in the length of the CSH gels with the curing age, were confirmed by 29 Si NMR techniques. Compressive strength and microstructural evaluations confirm the usefulness of eco-cement.

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Recycling of Silicon Carbide Sludge on the Preparation and Characterization of Lightweight Foamed Geopolymer Materials

    No full text
    This study used silicon carbide sludge (SCS) to prepare lightweight foaming geopolymer materials (FGPs) by the direct foaming method. Results showed that when the SCS replacement level was 10%, the bulk density of the lightweight FGPs with added foaming agent amounts of 0.5% and 2.0% was 0.59 and 0.49 g/cm3, respectively; at a curing time of 28 days, the lightweight FGPs with amounts of added foaming agent of 0.5% and 2.0% had bulk densities that were 0.65 and 0.58 g/cm3, respectively. When the SCS replacement level was 10%, and the amount of added foaming agent was 2.0%, the porosity ratio of the lightweight FGP increased from 31.88% to 40.03%. The mechanical strength of the lightweight FGPs with SCS replacement levels of 10% and 20% was 0.88 and 0.31 MPa, respectively. Additionally, when the amount of foaming agent increased to 2.0%, the thermal conductivity of the lightweight FGPs with SCS replacement levels of 10% and 20% were 0.370 and 0.456 W/m⋅K, respectively. When the curing time was 1 day, and the amount of added foaming agent was 0.5%, the reverse-side temperature of the lightweight FGPs with SCS replacement levels of 10% and 20% were 286 and 311 °C, respectively. The k value of the O2 reaction decreased from 2.94 × 10−4 to 1.76 × 10−4 because the reaction system was affected by the presence of SiC sludge, which was caused the reaction to consume O2 to form CO2. The results have been proposed to explain that the manufactured lightweight FGPs had a low thermal conductivity (0.370–0.456 W/m⋅K). Therefore, recycling of silicon carbide sludge in lightweight foaming geopolymer materials has potential as fire resistance material for the construction industry

    Utilization of Silicon Carbide Sludge as Metakaolin-Based Geopolymer Materials

    No full text
    The recycling of SiC sludge material is crucial for resource reutilization and environmental protection. In the current study, the effect of the mass ratio between the Na2SiO3 and sodium hydroxide (NaOH) solutions (NS/SS ratio) and the effect of SiC sludge on metakaolin geopolymers was comprehensively investigated to determine the underlying performance of the geopolymerization system. During thermal evolution, the second exothermic peak of 1.6NS10SCS (NS/SS ratio: 1.6, 10% SiC sludge) showed a heat evolution value of 990.6 W/g, which was the highest among other geopolymers. Additionally, the 1.6NS10SCS sample after 28 days of curing showed the highest flexural strength (6.42 MPa), compared to that of the others, and the DTA/TG (differential thermal analysis/thermogravimetry) results showed that the weight loss percentage increased to 14.62% from 400 to 750 &deg;C. For the 29Si nuclear magnetic resonance deconvolution, 1.6NS10SCS exhibited high fractions of Q4(3Al) (33.63%), Q4(2Al) (23.92%), and Q4(1Al) (9.70%). Thus, the geopolymer with the optimal SiC-sludge replacement level and NS/SS ratio contained more macropores and geopolymer gels, which benefit structural development. The experimental results indicated that SiC-sludge can potentially serve as a partial replacement for metakaolin and exhibited favorable mechanic characteristics

    Influence of SiC Sludge on the Microstructure of Geopolymers

    No full text
    There are considerable resource reuse and environmental concerns regarding SiC sludge (SiCS) that results from cutting silicon ingots into wafers. In the current study, the effect of the Na2SiO3 solution/sodium hydroxide solution (NS/SS) mass ratio and SiCS amount on metakaolin geopolymers was found during geopolymerization system performance. The results indicate that while NS/SS ratio was relatively low, increasing the NaOH content resulted in a sufficient amount of OH&minus; in the system to increase the solubility and hinder polycondensation, as indicated by the bulk density and setting-time results; since the polycondensation was inhibited, the mechanical strength was reduced. This study demonstrated that a geopolymer can be formed from a substitution of 10% SiCS and with an NS/SS ratio of 1.6, and that this geopolymer is a feasible material

    Circulation Fluidized Bed Combustion Fly Ash as Partial Replacement of Fine Aggregates in Roller Compacted Concrete

    No full text
    Recently, many people around the world have been concerned with environmental protection and sustainability. The goal of various countries&rsquo; research has been focused on how to regenerate existing resources. Circulation fluidized bed combustion (CFBC) technology is one of the emerging combustion technologies for electricity generation and produces more than 800,000 tons of CFBC fly ash (CFA) per year for combustion. CFA has been widely applied in cement additive, new building materials and cement-based materials. The goal of this study was to discuss the engineering properties of roller-compacted concrete containing CFA. Test subjects included compressive strength, flexural strength, absorption, setting time, unit weight, sulfate resistance, SEM microscopic observations and XRD ingredient analysis. Test results indicate the following: (1) using CFA as a substitute of fine aggregates up to 10 wt.% would improve the development of later flexural strength; (2) the increases in pre-pressure would increase the compressive strength and unit weight and decrease absorption; (3) using CFA would reduce the initial setting time by 30%&ndash;60% and reduce the final setting time by 16%&ndash;20%; (4) using CFA would reduce the absorption; (5) using CFA would reduce the unit weight by 0.5%&ndash;2.8%, and the increases in pre-pressure would increase the unit weight by about 0.9%&ndash;2.1%; (6) CaO in CFA helps to improve sulfate resistance; (7) scanning electron microscopy (SEM) observation shows that the increases in pre-pressure would reduce the pores; and (8) X-ray diffraction (XRD) analysis shows that the inclusion of CFA would increase the content of Ca(OH)2 in concrete

    Composite Properties of Non-Cement Blended Fiber Composites without Alkali Activator

    No full text
    The vigorous promotion of reuse and recycling activities in Taiwan has solved a number of problems associated with the treatment of industrial waste. Considerable advances have been made in the conversion of waste materials into usable resources, thereby reducing the space required for waste storage and helping to conserve natural resources. This study examined the use of non-alkali activators to create bonded materials. Our aims were to evaluate the feasibility of using ground-granulated blast-furnace slag (S) and circulating fluidized bed co-fired fly ash (F) as non-cement binding materials and determine the optimal mix proportions (including embedded fibers) with the aim of achieving high dimensional stability and good mechanical properties. Under a fixed water/binder ratio of 0.55, we combined S and F to replace 100% of the cement at S:F ratios of 4:6, 5:5, 6:4. Polypropylene fibers (L/d = 375) were also included in the mix at 0.1%, 0.2% and 0.5% of the volume of all bonded materials. Samples were characterized in terms of flowability, compressive strength, tensile strength, water absorption, shrinkage, x-ray diffraction (XRD) and scanning electron microscope (SEM) analysis. Specimens made with an S:F ratio of 6:4 achieved compressive strength of roughly 30 MPa (at 28 days), which is the 80% the strength of conventional cement-based materials (control specimens). The inclusion of 0.2% fibers in the mix further increased compressive strength to 35 MPa and enhanced composite properties

    Geopolymer Technologies for Stabilization of Basic Oxygen Furnace Slags and Sustainable Application as Construction Materials

    No full text
    The basic oxygen furnace slag is a major waste by-product generated from steel-producing plants. It possesses excellent characteristics and can be used as a natural aggregate. Chemically, the basic oxygen furnace slag encloses free CaO and free MgO, which is the main reason for the expansion crisis since these free oxides of alkaline earth metals react with water to form their hydroxide yields. The objective of the present research study is to stabilize the basic oxygen furnace slag by using innovative geopolymer technology, as their matrix contains a vast quantity of free silicon, which can react with free CaO and free MgO to form stable silicate compounds resulting in the prevention of the basic oxygen furnace slag expansion predicament. Lab-scale and ready-mixed plant pilot-scale experimental findings revealed that the compressive strength of fine basic oxygen furnace slag-based geopolymer mortar can achieve a compressive strength of 30&ndash;40 MPa after 28 days, and increased compressive strength, as well as the expansion, can be controlled less than 0.5% after ASTM C151 autoclave testing. Several pilot-scale cubic meters basic oxygen furnace slag-based geopolymer concrete blocks were developed in a ready-mixed plant. The compressive strength and autoclave expansion test results demonstrated that geopolymer technology does not merely stabilize the basic oxygen furnace slag production issue totally, but also turns the slags into value-added products
    corecore