70 research outputs found

    Monte Carlo sampling from the quantum state space. I

    Full text link
    High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.Comment: 13 pages, 5 figures, 1 table, 26 reference

    Monte Carlo sampling from the quantum state space. II

    Full text link
    High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration.Comment: 11 pages, 4 figures, 12 reference

    A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays

    Full text link
    In this paper, a tunable plasmonic refractive index sensor with nanoring-strip graphene arrays is numerically investigated by the finite difference time domain (FDTD) method. The simulation results exhibit that by changing the sensing medium refractive index nmed of the structure, the sensing range of the system is large. By changing the doping level ng, we noticed that the transmission characteristics can be adjusted flexibly. The resonance wavelength remains entirely the same and the transmission dip enhancement over a big range of incidence angles [0,45] for both TM and TE polarizations, which indicates that the resonance of the graphene nanoring-strip arrays is insensitive to angle polarization. The above results are undoubtedly a new way to realize various tunable plasmon devices, and may have a great application prospect in biosensing, detection and imaging

    Meta-analysis of MMP-9 levels in the serum of patients with epilepsy

    Get PDF
    BackgroundEpilepsy’s pathogenesis and progression are significantly influenced by neuroinflammation, blood–brain barrier function, and synaptic remodeling function. Matrix metalloproteinase 9 (MMP-9), as a critical factor, may contribute to the development of epilepsy through one or more of the above-mentioned pathways. This study aims to evaluate and quantify the correlation between MMP-9 levels and epilepsy.MethodsWe conducted a comprehensive search of Embase, Web of Science, PubMed, Cochrane Library, WanFang DATA, VIP, and the CNKI to identify studies that investigate the potential association between MMP-9 and epilepsy. The data were independently extracted by two researchers and assessed for quality using the Cochrane Collaboration tool. The extracted data were analyzed using Stata 15 and Review Manager 5.4. The study protocol was registered prospectively at PROSPERO, ID: CRD42023468493.ResultsThirteen studies with a total of 756 patients and 611 matched controls met the inclusion criteria. Eight of these studies reported total serum MMP-9 levels, and the other five studies were used for a further subgroup analysis. The meta-analysis indicated that the serum MMP-9 level was higher in epilepsy patients (SMD = 4.18, 95% confidence interval = 2.18–6.17, p < 0.00001) compared with that in the control group. Publication bias was not detected according to Begg’s test. The subgroup analysis of country indicated that the epilepsy patients in China, Poland, and Egypt had higher levels of serum MMP-9 than the control group, with the increase being more pronounced in Egypt. The subgroup analysis of the age category demonstrated that the serum MMP-9 levels of the adult patients with epilepsy were significantly higher than those of the matched controls. However, the serum MMP-9 levels did not significantly differ in children with epilepsy. The subgroup analysis of the seizure types demonstrated substantial difference in the MMP-9 levels between patients of seizure-free epilepsy (patients who have been seizure-free for at least 7 days) and the control group. Meanwhile, the serum MMP-9 level in patients with epileptic seizures was significantly higher than that in the control group. The subgroup analysis based on seizure duration in patients showed that the serum MMP-9 levels at 1–3, 24, and 72 h after seizure did not exhibit significant differences between female and male patients with epilepsy when compared with the control group. The serum MMP-9 levels at 1–3 and 24 h were significantly higher than those of the matched controls. Nevertheless, the serum MMP-9 level at 72 h was not significantly different from that in the control group.ConclusionThis meta-analysis presents the first comprehensive summary of the connection between serum MMP-9 level and epilepsy. The MMP-9 levels in epilepsy patients are elevated. Large-scale studies with a high level of evidence are necessary to determine the exact relationship between MMP-9 and epilepsy

    A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays

    Full text link
    In this paper, a tunable plasmonic refractive index sensor with nanoring-strip graphene arrays is numerically investigated by the finite difference time domain (FDTD) method. The simulation results exhibit that by changing the sensing medium refractive index nmed of the structure, the sensing range of the system is large. By changing the doping level ng, we noticed that the transmission characteristics can be adjusted flexibly. The resonance wavelength remains entirely the same and the transmission dip enhancement over a big range of incidence angles [0,45] for both TM and TE polarizations, which indicates that the resonance of the graphene nanoring-strip arrays is insensitive to angle polarization. The above results are undoubtedly a new way to realize various tunable plasmon devices, and may have a great application prospect in biosensing, detection and imaging

    Epoxyeicosatrienoic acids regulate adipocyte differentiation of mouse 3T3 cells, via PGC-1α activation, which is required for HO-1 expression and increased mitochondrial function

    Get PDF
    Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P \u3c 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P \u3c 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P \u3c 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P \u3c 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P \u3c 0.05, adiponectin expression, P \u3c 0.05, and lipid accumulation, P \u3c 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P \u3c 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P \u3c 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation

    Lineage-specific accelerated sequences underlying primate evolution

    Get PDF
    Understanding the mechanisms underlying phenotypic innovation is a key goal of comparative genomic studies. Here, we investigated the evolutionary landscape of lineage-specific accelerated regions (LinARs) across 49 primate species. Genomic comparison with dense taxa sampling of primate species significantly improved LinAR detection accuracy and revealed many novel human LinARs associated with brain development or disease. Our study also yielded detailed maps of LinARs in other primate lineages that may have influenced lineage-specific phenotypic innovation and adaptation. Functional experimentation identified gibbon LinARs, which could have participated in the developmental regulation of their unique limb structures, whereas some LinARs in the Colobinae were associated with metabolite detoxification which may have been adaptive in relation to their leaf-eating diet. Overall, our study broadens knowledge of the functional roles of LinARs in primate evolution

    Integrative omics reveals rapidly evolving regulatory sequences driving primate brain evolution

    Get PDF
    Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease

    On the Origin of Tibetans and Their Genetic Basis in Adapting High-Altitude Environments

    Get PDF
    Since their arrival in the Tibetan Plateau during the Neolithic Age, Tibetans have been well-adapted to extreme environmental conditions and possess genetic variation that reflect their living environment and migratory history. To investigate the origin of Tibetans and the genetic basis of adaptation in a rigorous environment, we genotyped 30 Tibetan individuals with more than one million SNP markers. Our findings suggested that Tibetans, together with the Yi people, were descendants of Tibeto-Burmans who diverged from ancient settlers of East Asia. The valleys of the Hengduan Mountain range may be a major migration route. We also identified a set of positively-selected genes that belong to functional classes of the embryonic, female gonad, and blood vessel developments, as well as response to hypoxia. Most of these genes were highly correlated with population-specific and beneficial phenotypes, such as high infant survival rate and the absence of chronic mountain sickness
    corecore