72 research outputs found

    Utilizing the Double-Precision Floating-Point Computing Power of GPUs for RSA Acceleration

    Get PDF
    Asymmetric cryptographic algorithm (e.g., RSA and Elliptic Curve Cryptography) implementations on Graphics Processing Units (GPUs) have been researched for over a decade. The basic idea of most previous contributions is exploiting the highly parallel GPU architecture and porting the integer-based algorithms from general-purpose CPUs to GPUs, to offer high performance. However, the great potential cryptographic computing power of GPUs, especially by the more powerful floating-point instructions, has not been comprehensively investigated in fact. In this paper, we fully exploit the floating-point computing power of GPUs, by various designs, including the floating-point-based Montgomery multiplication/exponentiation algorithm and Chinese Remainder Theorem (CRT) implementation in GPU. And for practical usage of the proposed algorithm, a new method is performed to convert the input/output between octet strings and floating-point numbers, fully utilizing GPUs and further promoting the overall performance by about 5%. The performance of RSA-2048/3072/4096 decryption on NVIDIA GeForce GTX TITAN reaches 42,211/12,151/5,790 operations per second, respectively, which achieves 13 times the performance of the previous fastest floating-point-based implementation (published in Eurocrypt 2009). The RSA-4096 decryption precedes the existing fastest integer-based result by 23%

    Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous immortalisation of cultured mammary epithelial cells (MECs) is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs) and the changes in gene expression associated with BME65Cs cells.</p> <p>Results</p> <p>BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous <it>bTERT </it>(bovine Telomerase Reverse Transcriptase) and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs) cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line). In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16<sup>INK4a </sup>was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene <it>c-Myc</it>, along with an undetectable level of breast tumor-related gene <it>Bag-1 </it>and <it>TRPS-1</it>, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, <it>DNMT1 </it>is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of <it>p53 </it>and <it>p16</it><sup><it>INK4a </it></sup>in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of <it>p53 </it>or <it>p16</it><sup><it>INK4a</it></sup>.</p> <p>Conclusions</p> <p>Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and exhibit non-malignant transformation. Although this cell line displays altered patterns of gene expression, it is clearly distinct from malignant breast cancer cell line. It showed that co-inhibition of cellular senescence and mitochondrial apoptosis pathways coordinates BME65Cs cells immortalisation. Additionally, mechanisms other than gene mutation are likely to be involved in regulation of cellular functions. This study provides an insight into the relationship between cell senescence and immortalisation. BME65Cs cells will be useful in future studies of cellular senescence and tumorigenesis.</p

    A Novel High-performance Implementation of CRYSTALS-Kyber with AI Accelerator

    Get PDF
    Public-key cryptography, including conventional cryptosystems and post-quantum cryptography, involves computation-intensive workloads. With noticing the extraordinary computing power of AI accelerators, in this paper, we further explore the feasibility to introduce AI accelerators into high-performance cryptographic computing. Since AI accelerators are dedicated to machine learning or neural networks, the biggest challenge is how to transform cryptographic workloads into their operations, while ensuring the correctness of the results and bringing convincing performance gains. After investigating and analysing the workload of NVIDIA AI accelerator, Tensor Core, we choose to utilize it to accelerate the polynomial multiplication, usually the most time-consuming part in lattice-based cryptography. We take measures to accommodate the matrix-multiply-and-add mode of Tensor Core and make a trade-off between precision and performance, to leverage it as a high-performance NTT box performing NTT/INTT through CUDA C++ WMMA APIs. Meanwhile, we take CRYSTALS-Kyber, the candidate to be standardized by NIST, as a case study on RTX 3080 with the Ampere Tensor Core. The empirical results show that the customized NTT of polynomial vector (n=256,k=4n=256,k=4) with our NTT box obtains a speedup around 6.47x that of the state-of-the-art implementation on the same GPU platform. Compared with the AVX2 implementation submitted to NIST, our Kyber-1024 can achieve a speedup of 26x, 36x, and 35x for each phase

    DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation

    Full text link
    In this work, we propose an AI-based method that intends to improve the conventional retinal disease treatment procedure and help ophthalmologists increase diagnosis efficiency and accuracy. The proposed method is composed of a deep neural networks-based (DNN-based) module, including a retinal disease identifier and clinical description generator, and a DNN visual explanation module. To train and validate the effectiveness of our DNN-based module, we propose a large-scale retinal disease image dataset. Also, as ground truth, we provide a retinal image dataset manually labeled by ophthalmologists to qualitatively show, the proposed AI-based method is effective. With our experimental results, we show that the proposed method is quantitatively and qualitatively effective. Our method is capable of creating meaningful retinal image descriptions and visual explanations that are clinically relevant.Comment: Accepted to IEEE WACV 202

    Bioinformatics analysis of CUL2/4A/9 and its function in head and neck squamous cell carcinoma

    Get PDF
    Introduction: Several previous studies have shown that differential expression of cullin (CUL) family proteins may be involved in mediation of the signal transduction pathways associated with cancer. However, the function of CULs is still unclear in head and neck squamous cell carcinoma (HNSCC). Material and methods: We used The Cancer Genome Atlas (TCGA) database, cBioPortal, Metascape, STRING, Cytoscape, Tumor Immune Estimation Resource (TIMER), Kaplan-Meier plotter, and Tumor Immune System Interaction Database (TISIDB) to access the expression of CULs and the possible correlation with the tumourigenesis, development, prognosis, immunity, and transcriptional level of CULs in HNSCC. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect messenger ribonucleid acid (mRNA) levels in HNSCC tissues and cell samples. We also explored the cell proliferation and migration separately by CCK8 assay and wound healing assay. Results: The results showed that the expressions of CUL2/4A were upregulated and CUL9 was downregulated in HNSCC patients as compared with normal patients. CUL2/4A/9 were also linked to the clinicopathological features and overall survival of HNSCC in bioinformatics analysis. Moreover, we noticed that CUL2/4A/9 may take part in tumour-specific immune response by modulating the tumour-infiltrating lymphocytes (TILs) and immunomodulators. Lastly, we found that CUL2/4A/9 could promote cellular proliferation and migration. Conclusion: These results suggest that the transcriptional levels of CUL2/4A/9 were upregulated and these genes could affect proliferation and migration of HNSCC cells. Therefore, CUL2/4A/9 could potentially function as novel independent biomarkers in HNSCC patients

    Dual lactate clearance in the viability assessment of livers donated after circulatory death with ex situ normothermic machine perfusion

    Get PDF
    Perfusate lactate clearance (LC) is considered one of the useful indicators of liver viability assessment during normothermic machine perfusion (NMP); however, the applicable scope and potential mechanisms of LC remain poorly defined in the setting of liver donation after circulatory death. Methods: The ex situ NMP of end-ischemic human livers was performed using the OrganOx Metra device. We further studied the extracellular signal-regulated kinases (phospho-extracellular signal-regulated kinase1/2 [pERK1/2]) pathway and several clinical parameters of these livers with successful LC (sLC, n = 5) compared with non-sLC (nLC, n = 5) in the perfusate (\u3c2.2 mmol/L at 2 h, n = 5, rapid retrieval without normothermic regional perfusion). Results: We found the pERK1/2 level was substantially higher in the nLC livers than in the sLC livers (n = 5) at 2- and 6-h NMP ( Conclusions: The dual LC in perfusate and bile can be helpful in evaluating the hypoxic injury of hepatocytes and cholangiocytes during the NMP of donation after circulatory death in liver donors

    Image-guided magnetic thermoseed navigation and tumor ablation using a magnetic resonance imaging system

    Get PDF
    Medical therapies achieve their control at expense to the patient in the form of a range of toxicities, which incur costs and diminish quality of life. Magnetic resonance navigation is an emergent technique that enables image-guided remote-control of magnetically labeled therapies and devices in the body, using a magnetic resonance imaging (MRI) system. Minimally INvasive IMage-guided Ablation (MINIMA), a novel, minimally invasive, MRI-guided ablation technique, which has the potential to avoid traditional toxicities, is presented. It comprises a thermoseed navigated to a target site using magnetic propulsion gradients generated by an MRI scanner, before inducing localized cell death using an MR-compatible thermoablative device. The authors demonstrate precise thermoseed imaging and navigation through brain tissue using an MRI system (0.3 mm), and they perform thermoablation in vitro and in vivo within subcutaneous tumors, with the focal ablation volume finely controlled by heating duration. MINIMA is a novel theranostic platform, combining imaging, navigation, and heating to deliver diagnosis and therapy in a single device

    The Bias-Variance Tradeoff and the Randomized GACV

    No full text
    We propose a new in-sample cross validation based method (randomized GACV) for choosing smoothing or bandwidth parameters that govern the bias-variance or fit-complexity tradeoff in `soft&apos; classification. Soft classification refers to a learning procedure which estimates the probability that an example with a given attribute vector is in class 1 vs class 0. The target for optimizing the the tradeoff is the Kullback-Liebler distance between the estimated probability distribution and the `true&apos; probability distribution, representing knowledge of an infinite population. The method uses a randomized estimate of the trace of a Hessian and mimics cross validation at the cost of a single relearning with perturbed outcome data. 1 INTRODUCTION We propose and test a new in-sample cross-validation based method for optimizing the biasvariance tradeoff in `soft classification&apos; (Wahba et al 1994), called ranGACV (randomized Generalized Approximate Cross Validation). Summarizing from Wahba et al(199..
    • …
    corecore