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Organ Donation and Procurement

Background. Perfusate lactate clearance (LC) is considered one of the useful indicators of liver viability assessment dur-
ing normothermic machine perfusion (NMP); however, the applicable scope and potential mechanisms of LC remain poorly 
defined in the setting of liver donation after circulatory death. Methods. The ex situ NMP of end-ischemic human livers was 
performed using the OrganOx Metra device. We further studied the extracellular signal-regulated kinases (phospho-extracel-
lular signal-regulated kinase1/2 [pERK1/2]) pathway and several clinical parameters of these livers with successful LC (sLC,  
n = 5) compared with non-sLC (nLC, n = 5) in the perfusate (<2.2 mmol/L at 2 h, n = 5, rapid retrieval without normothermic 
regional perfusion). Results. We found the pERK1/2 level was substantially higher in the nLC livers than in the sLC livers (n 
= 5) at 2- and 6-h NMP (P = 0.035 and P = 0.006, respectively). Immunostaining showed that upregulation of pERK1/2 was 
in both the hepatocytes and cholangiocytes in the nLC livers. Successful LC was associated with a marginally higher glyco-
gen restoration than nLC at 2 h NMP (n = 5, P = 0.065). Furthermore, bile lactate levels in all sLC livers were cleared into the 
normal range at 6 h NMP, whereas in the nLC group, only 2 livers had lower bile lactate levels, and the other livers had rising 
bile lactate levels in comparison with the corresponding perfusate lactate levels. The necrosis scores were higher in the nLC 
than in the sLC livers (n = 5) at 0- and 6-h NMP (P = 0.047 and P = 0.053, respectively). Conclusions. The dual LC in 
perfusate and bile can be helpful in evaluating the hypoxic injury of hepatocytes and cholangiocytes during the NMP of dona-
tion after circulatory death in liver donors.

(Transplantation Direct 2021;7: e789; doi: 10.1097/TXD.0000000000001243. Published online 17 November, 2021.)
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INTRODUCTION

Donor shortages have been a consistent challenge in organ 
transplantation, and there has been an increased focus on 
not only expanding the current donor pool through the use 

of marginal donors or extended criteria donations (ECDs), 
such as steatotic livers or donation after circulatory death 
(DCD), but also on  attempting to resuscitate declined 
grafts for transplantation. In the United States, over 
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12 000 patients are awaiting liver transplantation, with 
recent data reporting a waitlist mortality of 13.2 per 100 
waitlist years1; however, organ utilization has substantially 
decreased in the last 15 y, with almost 700 (8.9%) pro-
cured livers being discarded annually because of concerns 
about poor organ quality.2-4 Alarmingly, it has been pre-
dicted that the use of donor livers will fall to 44% by the 
year 2030, resulting in over 2000 fewer liver transplants.5 
The demand for liver grafts has driven the broader use 
of ECDs; however, ECDs are strongly associated with an 
increased risk of primary nonfunction or delayed failure.6

Although normothermic machine perfusion (NMP) of liver 
grafts has been considered as an alternative strategy to stand-
ard cold storage to lessen ischemia-reperfusion injury (IRI), 
only recently has this been shown to be clinically feasible. 
This technology is now approved for routine clinical use in 
Europe, and phase-3 testing is underway in the United States.7 
Another unique advantage of NMP over static preservation 
is that drugs or specific gene therapies can be administered 
directly to the liver during NMP. This window of oppor-
tunity for delivery of therapeutics may significantly impact  
posttransplant survival.8 Encouraging data applying NMP 
techniques to discarded livers have emerged supporting its use 
over static cold storage techniques, with the added advantage 
of maintaining physiological states in the former to allow for 
real-time functional testing.9-11 Recently, it has been reported 
that NMP can increase the transplant yield of donor livers,12 
and previous studies have shown that up to 71% of discarded 
livers can be subsequently transplanted.13 In clinical practice, 
identifying reliable biomarkers of injury and clinically relevant 
viability assessments to determine posttransplantation out-
comes is being increasingly implemented in machine perfusion 
protocols.14 NMP allows assessing the functional performance 
of the liver, and several biomarkers have been proposed to 
determine optimal clinical and metabolic liver responses dur-
ing ex vivo NMP, including perfusate lactate clearance (LC), 
the maintenance of a  stable perfusate pH value, glucose uti-
lization, bile production, and bile pH value. Perfusate LC has 
emerged as a relatively reliable indicator for liver viability.7,15,16 
In the current literature, bile production and pH have been used 
to measure biliary function following machine perfusion.17,18 In 
a study of 12 human extended criteria donor livers declined for 
transplantation, the high bile output group demonstrated more 
favorable markers in terms of functional performance, bio-
chemical analyses, histological responses, and displaying fewer 
signs of hepatic necrosis and venous congestion.19 In a later 
study of 6 human livers undergoing 6 h of NMP by the same 
group, biliary pH >7.48 combined with biliary bicarbonate >18 
mmol/L and biliary glucose <16 mmol/L were associated with 
satisfactory bile duct viability and appeared to preclude the 
development of posttransplant cholangiopathy.18

Hypoxia-inducible factors (HIFs) belong to a small fam-
ily of heterodimeric transcriptional activators that orchestrate 
the cellular responses to hypoxia.20 In the setting of DCD liver 
donors, It has been recognized that the expression HIFs can 
be upregulated in response to the prolonged warm ischemia 
time (WIT),21 suggesting that HIFs could be an ideal marker 
to assess liver donor function during NMP. Several findings 
have indicated that extracellular signal-regulated kinase 1/2 
(ERK1/2) can also serve as an additional transmitter of the 
hypoxic signal because hypoxia has been shown to acti-
vate ERK1/2 in cell lines.22-24 Moreover, several studies have 

demonstrated that the ERK1/2 pathway had been activated 
in hepatic IRI25,26 and that hepatic apoptosis, necrosis, inflam-
mation, and autophagy were mitigated following inhibition of 
the ERK1/2 pathway.26-29

To explore the prognostic value of LC in liver viability 
assessment during NMP, we studied hepatic ERK1/2 phospho-
rylation, necrosis, apoptosis, steatosis, and cluster of differen-
tiation 3 (CD3)–positive cell infiltration, as well as perfusate 
and bile chemistry with or without successful LC (sLC).

MATERIALS AND METHODS

Liver Inclusion and Exclusion Criteria
This study was approved by our institutional review board. 

Ten livers donated after circulatory death (DCD, n = 9)  
or donated after brain death (DBD, n = 1) were registered 
in DonorNet with written consent for research but subse-
quently declined for transplant by all centers were used in 
this study. These livers donors were rapid retrieval without 
normothermic regional perfusion. Donor criteria for inclusion 
in the study were as follows: (1) donor age >6 y, (2) donor 
serum bilirubin <10 mg/dL, (3) functional WIT (fWIT) <40 
min (from donor systolic blood pressure below 70 mm Hg to 
the initiation of aortic perfusion), (4) rapid recovery donors 
with research consent for liver procurement, with fWIT <40 
min, (5) suboptimal liver graft perfusion reported by procur-
ing surgeons, and (6) liver cold ischemia time <8 h for DBD 
or 6 h for DCD. Livers with the following findings during 
procurement were excluded from the study: (1) cirrhosis or 
(2) advanced fibrosis.

NMP Device, Perfusate, and Sampling
All livers were flushed with histidine-tryptophan-ketogluta-

rate solution after cessation of circulation during procurement. 
Cholecystectomy was performed during procurement. After 
a cold flush with histidine-tryptophan-ketoglutarate at the time 
of donor recovery, perfusion cannulas were placed in the portal 
vein, hepatic artery, and subhepatic inferior vena cava, respec-
tively, whereas the suprahepatic inferior vena cava was closed 
via suturing. The common bile duct was cannulated with a 12F 
drainage tube for bile collection. The cannulated liver under-
went final flushing with 500 mL of 5% albumin solution to pre-
vent air trapping. The OrganOx Metra device was calibrated 
and initialized per the manufacturer’s instructions for use. Five 
hundred milliliters of 5% albumin solution and 3 units of fresh-
packed red blood cells were sequentially introduced into device 
circulation to constitute the perfusate. Followed by injection of 
antibiotic (cefuroxime 750 mg), heparin (10 000 IU), and cal-
cium gluconate bolus, 4 syringes (50 mL) containing sodium 
taurocholate, heparin, insulin, and epoprostenol solutions were 
placed in microinfusion pumps and connected to device circula-
tion. After priming the device, a centrifugal pump was switched 
on, and circulation was initiated before attaching the organ. 
Once the  perfusate temperature reached 36 °C, boluses of 
5 mL 8.4% sodium bicarbonate injection were given in at least 
10-min intervals to adjust the perfusate to a pH 7.3 or above, 
after which the device would be ready for the liver. Circulation 
was temporarily stopped, and the liver was connected to the 
OrganOx Metra device; after the confirmation of liver connec-
tion and absence of air trapped inside the circulation, circula-
tion was initiated again, and device was closely monitored until 
the  liver reached homogenous perfusion and presented soft, 



© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.  3Xu et al

warm parenchyma; bleeding sites were repaired by suturing 
before the liver compartment was closed, and then the liver was 
subjected to at least 4 to 6 h of NMP. All liver manipulations 
were performed with aseptic techniques. Perfusate pH adjust-
ment after commencement of liver perfusion was performed 
with a 5 mL bolus of 8.4% sodium bicarbonate injection to 
maintain perfusate pH 7.3 when necessary. During device 
operation, hepatic arterial (HA) and venous pressure, portal 
and venous flow rates, perfusate pH, perfusate Pco2, and Po2 
data were logged and stored inside the onboard data storage. 
Both wedge and needle liver biopsies of the right lobe as well as 
perfusate samples were periodically taken at these time points 
during NMP: A baseline biopsy was taken at the back table, 
and baseline perfusate was taken within 3 min of NMP ini-
tiation after the  liver was connected. Biopsy and arterial per-
fusate samples were taken when NMP reached 15 min and 
were taken hourly from 1 to 6 h. Bile (0.5 mL), if present, was 
collected at each hourly mark when perfusate was collected. 
Total bile production was quantified by collecting bile in a 
measuring tube. Perfusate samples were immediately subjected 
to a blood-gas analyzer (GEM Premier 4000), and glucose and 
lactate readings were obtained. If perfusate glucose measured 
<180 mg/dL, Clinimix E 5/20 would be connected to the device 
circulation and administered at the rate of 2 mL/min to provide 
nutrition. Chemistry analyses were performed on a chemistry 
analyzer (Piccolo Xpress) using venous perfusate samples.

Hematoxylin and Eosin Staining and Periodic  
Acid–Schiff (PAS) Staining

The liver samples were fixed using 10% neutral formalin, 
paraffin-embedded or fast-frozen using liquid nitrogen, and 
cut with a thickness of 5 to 10 µm. Hematoxylin and eosin 
staining was performed at the anatomic and molecular pathol-
ogy core lab of our institute using a standard protocol. A liver 
pathologist (K.B.) did the histology interpretation in a blinded 
fashion. Periodic acid–Schiff staining was performed accord-
ing to the manufacture’s instruction (Sigma 395B). Briefly, the 
frozen liver sections were immersed in periodic acid solution 
for 5 min at room temperature (23 °C). Then, the slides were 
rinsed in several changes of distilled water and incubated with 
Schiff’s reagent for 15 min at room temperature. The slides 
were washed in running tap water for 5 min, counterstained 
with hematoxylin solution for 90 seconds, rinsed in run-
ning tap water, dehydrated, and mounted with xylene-based 
mounting media. The hematoxylin and eosin and PAS images 
were taken by the Olympus BX61 microscope and CellSens 
Dimension 1.18 software.

Western Blotting and Immunofluorescence Staining
The Western blotting/densitometry analysis and immuno-

fluorescence staining were done as described previously.30 The 
following primary and secondary antibodies were used to per-
form immunoblotting or immunostaining: phospho-ERK1/2 
(CST No. 9102), total-ERK1/2 (CST No. 9101), caspase-3 
(CST No. 9661), and GAPDH (CST No. 3683); horseradish 
peroxidase–conjugated goat antirabbit (7074, CST) or goat 
antimouse immunoglobulins (7076, CST); CD3 (Abcam No. 
ab16669), Hep par-1 (Novus, NBP2-45272), cytokeratin-19 
(CST No. 4558), and p62 (BD No. 610832). The immuno-
fluorescence photomicrographs were taken with the Olympus 
BX61 microscope, and images were captured by CellSens 
Dimension 1.18 software.

Data and Statistical Analysis
Numeric data are presented as mean ± SEM, and cat-

egorical data were shown in percentages. GraphPad Prism 
7 software (San Diego, CA) was utilized to plot the graphs. 
A Student t test was applied to detect the differences between 
study groups. The P values <0.05 were considered significant.

RESULTS

Demographics of Liver Donors, NMP Setting,  
and Real-Time Parameters Recording

Of the 10 discarded livers included in our study, the mean 
donor age was 33.8 ± 14.3, with 60% male donors, 90% 
Caucasian donors, and 10% African American donors; 90% 
of livers were DCD, and 10% of livers were DBD; the mean 
body mass index (kg/m2) was 28.3 ± 8.6. The mean WIT of 
DCD livers was 29.4 ± 11.8 min. The average time of DCD 
livers with systolic blood pressure <70 mm Hg (fWIT) was 
17.8 ± 6.3 min, and with Sao2, <80% were 27.0 ± 12.4 min; 
the average time from declaration of death to cross-clamp was  
10.0 ± 3.2 min, and mean cold ischemia time was  
309.8 ± 94.6 min. The average volume of sodium bicarbo-
nate for pH maintenance was 38.0 ± 12.3 mL (Table S1, SDC, 
http://links.lww.com/TXD/A380). Figure  1 shows the NMP 
device with a perfused liver on the system. The portal flow, 
HA pressure, HA flow, perfusate Po2, Pco2, and pH value 
were presented as average per minute (Figure 1C–H).

Lactate Dehydrogenase and ERK Phosphorylation  
in the Livers With or Without sLC

To explore the biological and molecular significance of per-
fusate LC, we used a cutoff value of 2.2 mmol/L at second-
hour NMP to define the sLC (≤2.2 mmol/L) and non-sLC (nLC,  
>2.2 mmol/L). This lactate cutoff value has been used as a 
measure of preserved liver function on NMP in several previ-
ous studies.7,11,13 Of the 10 NMP livers in our study, 5 livers 
achieved sLC at secondhour NMP. As shown in Figure 2A, the 
livers with sLC had significantly lower perfusate lactate levels at 
second-, fourth-, and sixth-hour NMP than the livers with nLC  
(P = 0.003, P = 0.002, or P = 0.001, respectively); however, 
no significant differences in warm, cold, or functional ischemia 
times were found between sLC and nLC livers (Figure 2B). The 
hepatic lactate dehydrogenase A (LDHA) levels in livers with 
sLC were marginally higher at 0, 2, and 6 h than those in nLC 
livers (Figure 2C; P = 0.051, P = 0.031, or P = 0.073, respec-
tively). As shown in Figure  2D, the phosphorylations ERK1, 
ERK2, and ERK1/2 were significantly increased in the livers 
with nLC at 6 h of NMP compared with those in the livers 
with sLC (P = 0.006, P = 0.035, or P = 0.010, respectively). To 
localize the expression of phosphorylated ERK, the hepatocytes 
and cholangiocytes were labeled with Hep Par-1 and cytokera-
tin-19, respectively, and double immunofluorescence stain-
ing with phospho-ERK1/2 was performed. An increased ERK 
phosphorylation was found mainly in the hepatocyte and chol-
angiocyte in livers with nLC when compared with the livers 
with sLC (Figure 3). In summary, the LC was well correlated to 
the phosphorylation of ERK in hepatocytes and cholangiocytes.

Hepatocellular Function and Glycogen Content 
 in the Livers With or Without sLC

To assess liver damage and functional status, we measured 
perfusate liver enzymes (alanine aminotransferase [ALT], 
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aspartate aminotransferase), bilirubin, albumin, glucose, 
and liver glycogen content using PAS staining. As shown in 
Figure 4A, ALT levels were significantly lower in the perfu-
sate with sLC at 0 and 2 h than in the perfusate without sLC  
(P = 0.035 or P = 0.044, respectively). No significant change 
was found with regard to perfusate aspartate aminotransferase, 
bilirubin, bicarbonate, and glucose (Figure  4B–D). Albumin 
levels were remarkably decreased in the perfusate with sLC at 
2, 4, and 6 h when compared with nLC (Figure 4E; P = 0.011,  
P = 0.012, or P = 0.037, respectively). Furthermore, we also 
found that the glycogen content was marginally higher in the 
livers with sLC at 2 h than those with nLC (Figure 5A and 5B;  
P = 0.065). Briefly, LC was associated with the hepatocyte 
function and injury.

Cholangiocyte Function of the Livers With or 
Without sLC

To evaluate biliary function and damage, we studied the 
perfusate alkaline phosphatase (ALP) and gamma-glutamyl 
transferase. No significant differences in perfusate ALP and 
gamma-glutamyl transferase were found between sLC and 
nLC livers (Figure  6A and B). There were 9 livers out of 
10 that produced bile in our study. As shown in Figure 6C, 
the volume of bile production by livers with sLC was sig-
nificantly higher than that by livers with nLC (P = 0.032). 
Moreover, we compared the changes in pH value and bicar-
bonate, glucose, and lactate levels between perfusate and 

bile. Regardless of the perfusate LC, all 9 livers produc-
ing bile appeared to have an increased bile pH value 
and  increased  bicarbonate levels  compared with  perfusate 
levels (Figure 6D–F), as well as decreased levels of bile glu-
cose (Figure 6E). Interestingly, all of the livers with sLC in 
perfusate had decreasing bile lactate levels at all NMP time 
points except the initial time points in the livers numbered 
5, 6, and 7l however, among nLC livers, only 1 (number 8) 
had a bile lactate level lower than 2.2 mmol/L at the end of 
NMP despite a decreasing trend that was seen in 2 livers 
(numbers 8 and 10). In contrast, another 2 livers (numbers 2 
and 4) with nLC had rising bile lactate levels compared with 
the corresponding perfusate levels (Figure 6G), which were 
consistent with the changing trends of perfusate ALP levels 
(Figure 6A). In short, we found  that the bile lactate levels 
were associated with cholangiocyte function in the setting 
of liver NMP.

Necrosis, Apoptosis, and Inflammatory Cell 
Infiltration of the Livers With or Without sLC

In the histology analysis, the hepatic necrosis and score were 
reported as no necrosis (0), single-cell necrosis (1), up to 30% 
necrosis (2), 30% to 60% necrosis (3), and >60% necrosis (4) 
by a pathologist (K.B.). We found that the livers with sLC had 
marginally lower necrosis scores at 0- and 6-h of NMP in com-
parison with livers with nLC (P = 0.047 and P = 00.053, respec-
tively), but the LC was not associated with hepatic steatosis 

FIGURE 1. NMP setting and real-time parameter recording. A and B, The OrganOx device and liver during NMP; portal flow (C); HA pressure 
(D); HA flow (E); perfusate Po2 (F); Pco2 (G); and pH value (H) according to lactate clearance (green: 2 h lactate <2.5, sLC; red: 2 h lactate ≥2.5, 
nLC). HA, hepatic arterial; nLC, nonsuccessful lactate clearance; NMP, normothermic machine perfusion; sLC, successful lactate clearance.
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(Figure 7A and B). Cleaved caspase-3 levels (Figure 7C and D)  
and CD3-positive cell infiltration (Figure  7E and F) were 
also comparable between sLC and nLC livers. These results 

suggest that the role of LC in the assessment of necrosis, 
apoptosis, steatosis, and inflammatory cell infiltration was 
limited; further studies are required to evaluate these aspects 

FIGURE 2. Lactate clearance and ERK phosphorylation in livers during NMP with sLC or nLC. Perfusate lactate levels (A); CIT, WIT, and fWIT (B); 
Western blotting of hepatic lactate dehydrogenase (C); and ERK1/2 phosphorylation (D). n = 5, P < 0.05 is considered as significant. CC, cross-
clamp; CIT, cold ischemia time; ERK, extracellular signal-regulated kinase; fWIT, functional warm ischemia time; LDHA, lactate dehydrogenase 
A; nLC, nonsuccessful lactate clearance; NMP, normothermic machine perfusion; pERK, phospho-ERK; Sao2, oxygen saturation; SBP, systolic 
blood pressure; sLC, successful lactate clearance; tERK, total-ERK; WIT, warm ischemia time.

FIGURE 3. Double immunofluorescence staining of p-ERK in livers with sLC and nLC at 0 h and 6 h NMP. The p-ERK signal is represented in 
red; the hepatocytes (labeled with hepatocyte specific antigen (Hep PAR-1) and cholangiocytes (labeled with CK-19) are represented in green; 
the nuclei are represented in blue (DAPI). CK-19, cytokeratin-19; DAPI, 4′,6-diamidino-2-phenylindole; p-ERK, phosphorylated extracellular 
signal-regulated kinase; nLC, nonsuccessful lactate clearance; NMP, normothermic machine perfusion; sLC, successful lactate clearance.
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in addition to LC. There was no significant difference in p62 
levels between sLC and nLC livers (Figure S1, SDC, http://
links.lww.com/TXD/A380).

DISCUSSION
LC has been widely accepted as a critical marker to assess 

liver viability during NMP; however, its regulatory mecha-
nisms and the scope of application remain poorly defined. 
Our data suggest dual LC in the perfusate and bile can be used 
to evaluate the severity of hypoxia-induced hepatocyte and 
cholangiocyte dysfunction that correlate to ERK1/2 pathway 
activation but not cold or warm time criteria currently used 
in the clinical practice. Furthermore, LC does not appear to 
be associated with hepatic apoptosis, steatosis, and inflamma-
tory cell infiltration during liver NMP.

Lactate traditionally has been used as a marker of sepsis 
and imminent mortality in critical care.31,32 Lactatemia can 
subsequently develop in tissue hypoxia, and earlier reports 
have revealed an essential correlation between LC and 
improved outcomes.31,33,34 In this context, the role of the liver 
is paramount and is responsible for removing 50% to 70% 
of circulating serum lactate.35 As such, many have suggested 
LC to be a reliable surrogate marker of hypoxic injury and 
downstream hepatocyte functionality.36,37 The lactate level 
rises inevitably in the procured liver organ because of reduced 
blood flow and oxygen delivery, which can activate the ERK 
pathway in a lactate-dependent manner.38 The N-Myc down-
stream-regulated gene 3 protein, which is degraded in a pro-
lyl-4-hydroxylase 2/VHL-dependent manner in normoxia, is 
stabilized by binding to lactate accumulating under hypoxia 

FIGURE 4. Hepatocellular function parameters during liver NMP with perfusate sLC or nLC. The perfusate ALT and AST (A and B), total 
bilirubin (C), and bicarbonate (D), albumin (E), glucose (F). P < 0.05 is considered as significant. ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; nLC, nonsuccessful lactate clearance; NMP, normothermic machine perfusion; sLC, successful lactate clearance.

FIGURE 5. The PAS staining and quantitative analysis of hepatic glycogen content. The representative PAS images (A) and the average density 
of glycogen content (B) in livers with sLC and nLC at 0 and 2 h NMP. nLC, nonsuccessful lactate clearance; NMP, normothermic machine 
perfusion; NS, not significant; PAS, periodic acid–Schiff; sLC, successful lactate clearance.
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and subsequently binds c-rapidly accelerated fibrosarcoma to 
mediate the hypoxia-induced activation of the rapidly-accel-
erated-fibrosarcoma–ERK pathway, promoting angiogenesis 

and cell growth.38 It has been shown that hypoxia-activated 
ERK1 was able to directly phosphorylate the carboxyl-terminal 
domain of HIF-1K.23 An ERK inhibitor (PD98059), as well as a 

FIGURE 6. Cholangiocyte function parameters during liver NMP with perfusate sLC or nLC. The perfusate ALP and GGT  (A and B), bile 
production (C), changes of perfusate and bile pH value (D), glucose (E), and bicarbonate (F), and bile lactate levels (G). P < 0.05 is considered 
as significant. ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; B, bile; nLC, nonsuccessful lactate clearance; NMP, normothermic 
machine perfusion; P, perfusate; sLC, successful lactate clearance.

FIGURE 7. Hepatic necrosis, apoptosis, and CD3 positive cell infiltration with perfusate sLC or nLC. Hematoxylin and eosin staining (A) and 
necrosis scores with a circle that is blank as no necrosis, pink as single cell to 30% necrosis, bright red as 30%–60% necrosis, and dark red as 
>60% necrosis (B); the representative Western blotting band of CCP-3 (C) and densitometry analysis (D); and representative immunofluorescence 
staining of CD3 cells in the livers (E) and counting (F). P < 0.05 is considered as significant. CD3, cluster of differentiation 3; CCP-3, cleaved 
caspase-3; nLC, nonsuccessful lactate clearance; NMP, normothermic machine perfusion; sLC, successful lactate clearance.



8 Transplantation DIRECT   ■   2021 www.transplantationdirect.com

negative mutant of ERK1 dominant in a hypoxic culturing model 
of human microvascular endothelial cells-1, diminished the tran-
scriptional activity HIF-1.23,39 Additionally, in the presence of 
oxygen, HIF-2α is modified by HIF-specific prolyl-4-hydroxy-
lases, leading to proteasomal degradation mediated in part by 
the Von Hippel Lindau tumor suppressor protein.40 An in vitro 
study suggested that HIF-2α was phosphorylated by ERK1/2 
serine residue 672 in a hypoxia environment with only 1% of 
oxygen, and a mutation of this site to an alanine residue or 
an ERK1/2 inhibitor decreased HIF-2 transcriptional activity 
and displaced HIF-2α to the cytoplasm without changing its 
protein expression levels.41 Furthermore, our data also showed 
that livers with sLC had higher hepatic LDHA levels, which is a 
crucial enzyme to mediate the conversion between lactate and 
pyruvate, and the LDHA level could be increased in a hypoxia 
environment.42 One of the possible regulatory mechanisms for 
this is that the LDHA promoter contains a core sequence 5′-
RCGTG-3′ that can be recognized by HIF-1, thus promot-
ing LDHA transcription.43 These previous studies support our 
findings that phosphorylation of ERK1/2 in hepatocytes and 
cholangiocytes was inversely correlated with LC in the perfusate 
and bile accordingly, suggesting that the dual LC in the perfusate 

and bile can be a useful hypoxic marker to assess the function 
of hepatocytes and cholangiocytes during liver NMP (Figure 8).

Interestingly, our data also suggest that sLC at 2 h of NMP 
was associated with less hepatocellular injury, as evidenced 
by lower levels of perfusate ALT and less hepatic necrosis, 
improved glucose utilization and hepatic glycogen restora-
tion, albumin uptake, and bile production, but did not cor-
relate with hepatic apoptosis, steatosis, or CD3-positive cell 
infiltration. One of the notable differences in our study is that 
the 9 out of 10 livers produced bile and almost all of the liv-
ers showed a good capacity to alkalize the bile and glucose 
reuptake, which is in contrast with the bile pH value and 
bicarbonate criteria reported in previous studies.18,19 These 
discrepancies may be due to our relatively small sample size or 
an overall better quality of the discarded livers included in our 
study. An obvious shortfall of our study is that no liver with 
successful dual LC was transplanted; therefore, the long-term 
prognosis is not available. This does not affect the clinical sig-
nificance of our study, as we used the same standard NMP 
system (OrganOx Metra) as previous clinical studies with 
transplantation.7 The major takeaway in our study is that 
we clarified the regulatory mechanism of perfusate LC as a 

FIGURE 8. The lactate metabolism in hepatic cells and ERK activation during ischemia-reperfusion injury. A, The proportional structure of a 
liver lobule is represented. B, The molecular events regarding lactate clearance and ERK pathway during normoxia and hypoxia. Raf, rapidly 
accelerated fibrosarcoma; ERK, extracellular signal-regulated kinase; NDRG3, N-Myc downstream-regulated gene 3 protein; nLC, nonsuccessful 
lactate clearance; sLC, successful lactate clearance.
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hypoxic hepatocellular marker closely linking to the ERK1/2 
phosphorylation and extended its use to evaluate cholangio-
cyte hypoxia status.

Besides the relatively small numbers, there are several other 
limitations in our present study. Further studies are required 
to explore the possible mechanisms between the ERK activa-
tion and LC status, as well as the possible downstream targets. 
More NMP cases with liver transplantation are also desired to 
evaluate the significance of bile LC in predicting biliary com-
plications. Another issue is that the livers enrolled in our study 
were DCD donors with rapid retrieval without normothermic 
regional perfusion, which might limit the applicability of our 
results only to DCD organs without normothermic regional 
perfusion. Furthermore, we do not have direct evidence in this 
study to demonstrate that  the cholangiocyte could actively 
uptake or release lactate, despite the fact that our results alluded 
it was possible, which also can be supported by the fact that 
biliary cells can actively exchange metabolites with the bile.44

In conclusion, we found that the dual LC in perfusate and 
bile could be helpful in evaluating the severity of hypoxic IRI 
of hepatocytes and cholangiocytes during NMP. Additionally, 
histology studies may be required to provide further insight 
into steatosis, inflammatory infiltration, and apoptosis in 
NMP of discarded human livers.
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