21,657 research outputs found

    Gamma-Ray Burst Jet Breaks Revisited

    Get PDF
    Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow light curve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we re-investigate this problem using a large sample of GRBs that have an optical jet break that is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from 1997 February to 2015 March that have optical and, for Swift GRBs, X-ray light curves that are consistent with the jet break interpretation. Out of the 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break, consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. Most jet breaks occur at 90 ks, with a typical opening angle θj = (2.5 ± 1.0)°. This gives a typical beaming correction factor fb−1∼1000{f}_{b}^{-1}\sim 1000 for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions: log(Eγ,iso/erg) = 53.11 with σ = 0.84; log(EK,iso/erg) = 54.82 with σ = 0.56; log(Eγ/erg) = 49.54 with σ = 1.29; and log(EK/erg) = 51.33 with σ = 0.58. We also investigate several empirical correlations (Amati, Frail, Ghirlanda, and Liang–Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the Swfit era, is most likely the source of scatter. If one limits the sample to jet breaks later than 104 s, the Liang–Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them

    Comparing hierarchical black hole mergers in star clusters and active galactic nuclei

    Full text link
    Star clusters (SCs) and active galactic nuclei (AGNs) are promising sites for the occurrence of hierarchical black hole (BH) mergers. We use simple models to compare hierarchical BH mergers in two of the dynamical formation channels. We find that the primary mass distribution of hierarchical mergers in AGNs is higher than that in SCs, with the peaks of ∼\sim50 M⊙50\,M_{\odot} and ∼\sim13 M⊙13\,M_{\odot}, respectively. The effective spin (χeff\chi_{\rm eff}) distribution of hierarchical mergers in SCs is symmetrical around zero as expected and ∼\sim50%50\% of the mergers have ∣χeff∣>0.2|\chi_{\rm eff}|>0.2. The distribution of χeff\chi_{\rm eff} in AGNs is narrow and prefers positive values with the peak of χeff≥0.3\chi_{\rm eff}\ge0.3 due to the assistance of AGN disks. BH hierarchical growth efficiency in AGNs, with at least ∼\sim30%30\% of mergers being hierarchies, is much higher than the efficiency in SCs. Furthermore, there are obvious differences in the mass ratios and effective precession parameters of hierarchical mergers in SCs and AGNs. We argue that the majority of the hierarchical merger candidates detected by LIGO-Virgo may originate from the AGN channel as long as AGNs get half of the hierarchical merger rate.Comment: 12 pages, 5 figures, 2 tables, accepted for publication in PHYS. REV. D; v2. add Figs. 4 and 5, showing mass-ratios and effective precession parameters, respectively; v3. delete an additional free parameter (maximum generation, NmaxGN_{\rm max}^{\rm G}), replot Fig. 3 using the mergers detected by LIGO-Virgo, and add Yong Yuan as the third author of this manuscript; v4. add more details for SN

    Many-Body Chiral Edge Currents and Sliding Phases of Atomic Spin Waves in Momentum-Space Lattice

    Get PDF
    Collective excitations (spinwaves) of long-lived atomic hyperfine states can be synthesized into a Bose-Hubbard model in momentum space. We explore many-body ground states and dynamics of a two-leg momentum-space lattice formed by two coupled hyperfine states. Essential ingredients of this setting are a staggered artificial magnetic field engineered by lasers that couple the spinwave states, and a state-dependent long-range interaction, which is induced by laser-dressing a hyperfine state to a Rydberg state. The Rydberg dressed two-body interaction gives rise to a state-dependent blockade in momentum space, and can amplify staggered flux induced anti-chiral edge currents in the many-body ground state in the presence of magnetic flux. When the Rydberg dressing is applied to both hyperfine states, exotic sliding insulating and superfluid/supersolid phases emerge. Due to the Rydberg dressed long-range interaction, spinwaves slide along a leg of the momentum-space lattice without costing energy. Our study paves a route to the quantum simulation of topological phases and exotic dynamics with interacting spinwaves of atomic hyperfine states in momentum-space lattice. Introduction-Chiral edge states have played an important role in understanding quantum Hall effects [1-3] in solid state materials [4-6]. Ultracold atoms exposed to artificial gauge fields provide an ideal platform to simulate chiral edge currents in and out of equilibrium. This is driven by the ability to precisely control and in-situ monitor [7, 8] internal and external degrees of freedom, and atom-atom interactions [9]. Chiral dynamics [10-13] has been examined in the continuum space [14, 15], ladders [16-20], and optical lattices [21-28]. However, chiral states realized in the coordinate space require extremely low temperatures (typical in the order of a few kilo Hz) to protect the topological states from being destroyed by motional fluctuations [13]. Up to now, experimental observations of chiral phenomena in ultracold gases are largely at a single-particle level, due to unavoidable dis-sipations (e.g. spontaneous emission and heating) [9, 29-33], while the realization of many-body chiral edge currents in ultracold atoms is still elusive

    IMAGE-BASED MEASUREMENT AND BIOMECHANICAL ANALYSIS OF THE KNEE JOINT DURING FUNCTIONAL ACTIVITIES

    Get PDF
    A new approach based on the integration of medical image-based measurement techniques, infrared stereophotogrammetry and finite element modelling (FEM) was developed for comprehensive subject-specific biomechanical analyses of the knee joint during weight-bearing functional activities including cycling. The medical image-based methods include digitally reconstructed radiograph (DRR) based 3D fluoroscopy methods, and a new slice-to-volume registration method using FLASH MRI for the real-time measurement of the 3D kinematics of the knee in vivo. With the new approach, the soft tissue artefacts associated with skin marker-based stereophotogrammetry and their effects on the calculated biomechanical variables were also investigated

    GRB 120729A: External Shock Origin for Both the Prompt Gamma-Ray Emission and Afterglow

    Get PDF
    Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth \gamma-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt \gamma-ray emission to the afterglow with photon index from Γγ=1.36 to Γ≈1.75. There is no obvious evolution of the SED during the afterglow. ...(Please see article full tet for complete abstract.
    • …
    corecore