110,406 research outputs found

    Concrete: Potential material for Space Station

    Get PDF
    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth

    On the Tidal Dissipation of Obliquity

    Full text link
    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ

    Physical properties of concrete made with Apollo 16 lunar soil sample

    Get PDF
    This paper describes the first phase of the long-term investigation for the construction of concrete lunar bases. In this phase, petrographic and scanning electron microscope examinations showed that the morphology and elemental composition of the lunar soil made it suitable for use as a fine aggregate for concrete. Based on this finding, calcium aluminate cement and distilled water were mixed with the lunar soil to fabricate test specimens. The test specimens consisted of a 1-in cube, a 1/2-in cube, and three 0.12 x 0.58 x 3.15-in beam specimens. Tests were performed on these specimens to determine compressive strength, modulus of rupture, modulus of elasticity, and thermal coefficient of expansion. Based on examination of the material and test results, it is concluded that lunar soil can be used as a fine aggregate for concrete

    Toward a Deterministic Model of Planetary Formation IV: Effects of Type-I Migration

    Full text link
    In a further development of a deterministic planet-formation model (Ida & Lin 2004), we consider the effect of type-I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early embedded phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type-I migration leads to their efficient self-clearing. But, embryos continue to form from residual planetesimals at increasingly large radii, repeatedly migrate inward, and provide a main channel of heavy element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model and type-I migration is no longer an effective disruption mechanism for mars-mass embryos. Over wide ranges of initial disk surface densities and type-I migration efficiency, the surviving population of embryos interior to the ice line has a total mass several times that of the Earth. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. But, the onset of efficient gas accretion requires the emergence and retention of cores, more massive than a few M_earth, prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type-I migration. We suggest that the observed fraction of solar-type stars with gas giant planets can be reproduced only if the actual type-I migration time scale is an order of magnitude longer than that deduced from linear theories.Comment: 32 pages, 8 figures, 1 table, accepted for publication in Ap

    Diquarks, Pentaquarks and Dibaryons

    Full text link
    We explore the connection between pentaquarks and dibaryons composed of three diquarks in the framework of the diquark model. With the available experimental data on H dibaryon, we estimate the Pauli blocking and annihilation effects and constrain the P=−P=- pentaquark SU(3)FSU(3)_F singlet mass. Using the Θ+\Theta^+ pentaquark mass, we estimate P=−P=- dibaryon mass

    Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events

    Full text link
    The deployment of DeepCore array significantly lowers IceCube's energy threshold to about 10 GeV and enhances the sensitivity of detecting neutrinos from annihilations and decays of light dark matter. To match this experimental development, we calculate the track event rate in DeepCore array due to neutrino flux produced by annihilations and decays of galactic dark matter. We also calculate the background event rate due to atmospheric neutrino flux for evaluating the sensitivity of DeepCore array to galactic dark matter signatures. Unlike previous approaches, which set the energy threshold for track events at around 50 GeV (this choice avoids the necessity of including oscillation effect in the estimation of atmospheric background event rate), we have set the energy threshold at 10 GeV to take the full advantage of DeepCore array. We compare our calculated sensitivity with those obtained by setting the threshold energy at 50 GeV. We conclude that our proposed threshold energy significantly improves the sensitivity of DeepCore array to the dark matter signature for mχ<100m_{\chi}< 100 GeV in the annihilation scenario and mχ<300m_{\chi}<300 GeV in the decay scenario.Comment: 19 pages, 5 figures; match the published versio

    Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks

    Full text link
    This work shows that it is possible to fool/attack recent state-of-the-art face detectors which are based on the single-stage networks. Successfully attacking face detectors could be a serious malware vulnerability when deploying a smart surveillance system utilizing face detectors. We show that existing adversarial perturbation methods are not effective to perform such an attack, especially when there are multiple faces in the input image. This is because the adversarial perturbation specifically generated for one face may disrupt the adversarial perturbation for another face. In this paper, we call this problem the Instance Perturbation Interference (IPI) problem. This IPI problem is addressed by studying the relationship between the deep neural network receptive field and the adversarial perturbation. As such, we propose the Localized Instance Perturbation (LIP) that uses adversarial perturbation constrained to the Effective Receptive Field (ERF) of a target to perform the attack. Experiment results show the LIP method massively outperforms existing adversarial perturbation generation methods -- often by a factor of 2 to 10.Comment: to appear ECCV 2018 (accepted version

    Matching model of flow table for networked big data

    Full text link
    Networking for big data has to be intelligent because it will adjust data transmission requirements adaptively during data splitting and merging. Software-defined networking (SDN) provides a workable and practical paradigm for designing more efficient and flexible networks. Matching strategy in the flow table of SDN switches is most crucial. In this paper, we use a classification approach to analyze the structure of packets based on the tuple-space lookup mechanism, and propose a matching model of the flow table in SDN switches by classifying packets based on a set of fields, which is called an F-OpenFlow. The experiment results show that the proposed F-OpenFlow effectively improves the utilization rate and matching efficiency of the flow table in SDN switches for networked big data.Comment: 14 pages, 6 figures, 2 table
    • …
    corecore