3,086 research outputs found

    Effects of Marathon Training on Male and Female Femoral Stress Fracture Risk

    Get PDF
    Marathon runners are prone to femoral stress fractures due to the high magnitudes and frequencies of lower extremity loads during training. Female runners tend to have a greater incidence of stress fracture compared to male runners. Sex-specific differences in body structure, joint pressure, and muscle activation patterns that influence bone remodeling may cause this observed difference in stress fracture occurrence. The goal of this thesis was to develop a finite element model of the femur during marathon training, then determine if marathon training affected bone properties of male and female runners differently. To achieve this goal, a finite element femur model was integrated with a bone remodeling algorithm. Sex-specific muscle and joint pressure loads corresponding to baseline activity and marathon training were applied to the finite element femur model. Axial strain, density, damage, and remodeling activity were quantified at regions predicted to be at high risk of stress fracture. The major results of this analysis predicted that marathon training increased bone damage at all regions of interest in both males and females, especially at the inferior neck. The model predicted that the superior neck, trochanter, and proximal diaphysis were more severely weakened in females than males after marathon training. While this model cannot directly quantify femoral stress fracture risk, it may be used to predict regions of bone weakness in male and female marathon runners. Future work may be done to improve accuracy of this model by using sex-specific femur geometry and bone remodeling parameters specific to male and female marathon runners. This model may be useful in future applications to study effectiveness of injury preventive methods, such as gait retraining, in reducing bone damage

    Leadership and Agency as a Novice Teacher

    Get PDF
    Tells an inspiring tale of a new teacher who refused to accept the dreary status quo to which beginning professionals are so often consigned. Almost in anger at the assumption that she was supposed to be miserable for her whole first year, she struggled mightily to find innovative ways to solve her most intractable classroom problems, and then turned her energies to whole-school reform

    Senior Recital

    Get PDF

    Evidence of abundant stop codon readthrough in Drosophila and other Metazoa

    Get PDF
    While translational stop codon readthrough is often used by viral genomes, it has been observed for only a handful of eukaryotic genes. We previously used comparative genomics evidence to recognize protein-coding regions in 12 species of Drosophila and showed that for 149 genes, the open reading frame following the stop codon has a protein-coding conservation signature, hinting that stop codon readthrough might be common in Drosophila. We return to this observation armed with deep RNA sequence data from the modENCODE project, an improved higher-resolution comparative genomics metric for detecting protein-coding regions, comparative sequence information from additional species, and directed experimental evidence. We report an expanded set of 283 readthrough candidates, including 16 double-readthrough candidates; these were manually curated to rule out alternatives such as A-to-I editing, alternative splicing, dicistronic translation, and selenocysteine incorporation. We report experimental evidence of translation using GFP tagging and mass spectrometry for several readthrough regions. We find that the set of readthrough candidates differs from other genes in length, composition, conservation, stop codon context, and in some cases, conserved stem–loops, providing clues about readthrough regulation and potential mechanisms. Lastly, we expand our studies beyond Drosophila and find evidence of abundant readthrough in several other insect species and one crustacean, and several readthrough candidates in nematode and human, suggesting that functionally important translational stop codon readthrough is significantly more prevalent in Metazoa than previously recognized.National Institutes of Health (U.S.) (U54 HG00455-01)National Science Foundation (U.S.) (CAREER 0644282)Alfred P. Sloan Foundatio

    Wide Field-of-View, Large-Area Long-wave Infrared Silicon Metalenses

    Full text link
    Long-wave infrared (LWIR, 8-12 ÎŒm\mu m wavelengths) is a spectral band of vital importance to thermal imaging. Conventional LWIR optics made from single-crystalline Ge and chalcogenide glasses are bulky and fragile. The challenge is exacerbated for wide field-of-view (FOV) optics, which traditionally mandates multiple cascaded elements that severely add to complexity and cost. Here we designed and experimentally realized a LWIR metalens platform based on bulk Si wafers featuring 140∘^\circ FOV. The metalenses, which have diameters exceeding 4 cm, were fabricated using a scalable wafer-level process involving photolithography and deep reactive ion etching. Using a metalens-integrated focal plane array, we further demonstrated wide-angle thermal imaging
    • 

    corecore