39 research outputs found

    Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition

    Get PDF
    Pressurized oxy-fuel fluidized bed (POFB) combustion is regarded as a promising technology for carbon capture from coal-fired power plants. High pressure and temperature conditions have important impacts on the flow characteristic of fluidized bed, and understanding them will help to optimize the design and operation of the POFB boiler. In this work, experiments were carried out in two pressurized fluidized bed (PFB) devices (a hot PFB and a “visual PFB”) both operated under high temperature (20-800 °C) and high pressure conditions (0.1-1.0 MPa). Four parameters including the minimum fluidization velocity (umf), the minimum bubbling velocity (umb), bubble diameter (Db) and bubble frequency (f) were examined in this study. Results showed that the umf decreases with rising pressure and temperature. Based on our results a formula was fitted for calculating the minimum fluidization velocity in PFB, with a relative error less than 15%. With the increase of fluidization number (w), the bubble size and tail vortex increased gradually, the bubbles tended to merge, and the shape of bubbles became more irregular. The Db decreases with the increase of temperature and pressure at the same w. The f increases with increased w, while it decreased with the increase of temperature and pressure

    Simultaneous Bright- and Dark-Field X-ray Microscopy at X-ray Free Electron Lasers

    Full text link
    The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, Dark Field X-ray Microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the 101210^{12} photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics

    The Instability Criterion for Bicrystal at Nanoscale

    No full text
    Atomistic simulations are performed to predict the plastic yield using the instability criterion under thermal effect. The results show the instability criterion is applicable at low temperature (0~100 K) and invalid at a higher temperature (>200 K) due to the influence of thermal vibration. The tensile stress, minimum eigenvalue of matrix A, and atom configurations are compared to investigate the instability criterion in bicrytals. The instability criterion can successfully capture the plastic deformation initiation for bicrystal at 0 K

    New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment

    No full text
    <p><b>Context:</b> A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics.</p> <p><b>Objectives:</b> The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol (PVCL–PVA–PEG) graft copolymer.</p> <p><b>Methods:</b> Nanomicelle curcumin was formulated and optimized and then further evaluated for <i>in vitro</i> cytotoxicity/<i>in vivo</i> ocular irritation, <i>in vitro</i> cellular uptake/<i>in vivo</i> corneal permeation, and <i>in vitro</i> antioxidant activity/<i>in vivo</i> anti-inflammatory efficacy.</p> <p><b>Results:</b> The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL–PVA–PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved <i>in vitro</i> cellular uptake and <i>in vivo</i> corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution.</p> <p><b>Conclusions:</b> These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.</p

    Pressure-induced phase transition in cubic Yb2O3 and phase transition enthalpies

    No full text
    The high pressure structural evolution of cubic Yb2O3 has been studied using in situ synchrotron angle dispersive x-ray diffraction in combination with diamond anvil cell techniques up to 44.1 GPa. The XRD measurements revealed an irreversible reconstructive phase transition from cubic to monoclinic Yb2O3 at 11.2 GPa and extending up to 28.1 GPa with ∼8.1% volume collapse and a subsequent reversible displacive transition from monoclinic to hexagonal phase starting at 22.7 GPa. The monoclinic phase coexists with the hexagonal phase up to 44.1 GPa. After pressure releases, the hexagonal Yb2O3 reverts to the monoclinic structure. The second-order Birch–Murnaghan equation of state fit to the pressure–volume data yields a bulk modulus of 201 (4), 187 (6), and 200 (4) GPa for the cubic, monoclinic, and hexagonal phases, respectively. Furthermore, the effects of the hydrostatic pressure state on the diffraction patterns, bulk modulus, and onset transition pressure of Yb2O3 under high pressure have been discussed. It is concluded that the bulk modulus of the cubic Ln2O3 phase increases with decreasing cation radius due to lanthanide contraction. Another important work in this study is the determination of the enthalpies of the cubic to monoclinic and monoclinic to hexagonal phase transitions of Yb2O3 of 37.0 and 17.4 kJ/mol, respectively, based on the basic thermodynamic equations and using the onset transition pressures and corresponding volume changes obtained from high pressure XRD experiments

    Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure

    No full text
    Abstract Background Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Methods Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). Results After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P < 0.05), and was dependent on hepatocyte growth factor (HGF). Furthermore, rats with ALF that received transplanted c-Met-BMSCs showed significantly improved homing ability to the injured liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Conclusions Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair
    corecore