173 research outputs found

    Beyond the photocycle-how cryptochromes regulate photoresponses in plants?

    Get PDF
    Cryptochromes (CRYs) are blue light receptors that mediate light regulation of plant growth and development. Land plants possess various numbers of cryptochromes, CRY1 and CRY2, which serve overlapping and partially redundant functions in different plant species. Cryptochromes exist as physiologically inactive monomers in darkness; photoexcited cryptochromes undergo homodimerization to increase their affinity to the CRY-signaling proteins, such as CIBs (CRY2-interacting bHLH), PIFs (Phytochrome-Interacting Factors), AUX/IAA (Auxin/INDOLE-3-ACETIC ACID), and the COP1-SPAs (Constitutive Photomorphogenesis 1-Suppressors of Phytochrome A) complexes. These light-dependent protein-protein interactions alter the activity of the CRY-signaling proteins to change gene expression and developmental programs in response to light. In the meantime, photoexcitation also changes the affinity of cryptochromes to the CRY-regulatory proteins, such as BICs (Blue-light Inhibitors of CRYs) and PPKs (Photoregulatory Protein Kinases), to modulate the activity, modification, or abundance of cryptochromes and photosensitivity of plants in response to the changing light environment

    T-URF13 Protein from Mitochondria of Texas Male-Sterile Maize (Zea mays L.)

    Get PDF
    The protein T-URF13 (URF13) is specific to mitochondria of maize (Zea mays L.) with Texas (T) male-sterile cytoplasm and has been implicated in causing male sterility and susceptibility to T-cytoplasm-specific fungal diseases. T-URF13 was purified from isolated mitochondria from maize (line B73) with T cytoplasm by gel filtration and a quasi two-dimensional polyacrylamide gel electrophoresis system. Antibodies to the purified and denatured protein were produced in rabbits. Anti-T-URF13 antiserum was used to show that T-URF13 is in the inner membrane of mitochondria and behaves as an integral membrane protein when mitochondria are fractionated with sodium carbonate or Triton X-114. The antiserum and protein A tagged with 20-nanometer-gold particles were used to localize T-URF13 in T mitochondria by electron microscopy of sections of isolated mitochondria from etiolated shoots and sections of roots and of tapetal cells at pre-and post-degeneration stages of microsporogenesis. The microscopic study confirms that T-URF13 is specifically localized in the mitochondrial membranes of all of the T mitochondria tested, notably those in the tapetum from the meiocyte stage to the late-microspore stage. No change in the amount of labeled T-URF13 protein in the mitochondria of aging tapetal cells was detected

    Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice.

    Get PDF
    The S-domain receptor kinase (SRK) comprises a highly polymorphic subfamily of receptor-like kinases (RLKs) originally found to be involved in the self-incompatibility response in Brassica. Although several members have been identified to play roles in developmental control and disease responses, the correlation between SRKs and yield components in rice is still unclear. The utility of transgenic expression of a dominant negative form of SRK, OsLSK1 (Large spike S-domain receptor like Kinase 1), is reported here for the improvement of grain yield components in rice. OsLSK1 was highly expressed in nodes of rice and is a plasma membrane protein. The expression of OsLSK1 responded to the exogenous application of growth hormones, to abiotic stresses, and its extracellular domain could form homodimers or heterodimers with other related SRKs. Over-expression of a truncated version of OsLSK1 (including the extracellular and transmembrane domain of OsLSK1 without the intracellular kinase domain) increased plant height and improve yield components, including primary branches per panicle and grains per primary branch, resulting in about a 55.8% increase of the total grain yield per plot (10 plants). Transcriptional analysis indicated that several key genes involved in the GA biosynthetic and signalling pathway were up-regulated in transgenic plants. However, full-length cDNA over-expression and RNAi of OsLSK1 transgenic plants did not exhibit a detectable visual phenotype and possible reasons for this were discussed. These results indicate that OsLSK1 may act redundantly with its homologues to affect yield traits in rice and manipulation of OsLSK1 by the dominant negative method is a practicable strategy to improve grain yield in rice and other crops

    Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis).

    Get PDF
    Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably, more than 42 280 distinct splicing isoforms were derived from 128 667 intron-containing full-length FLNC reads, including a large number of AS events associated with rhizome systems. In addition, we characterized 25 069 polyadenylation sites from 11 450 genes, 6311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements within the intronic polyadenylation region. Furthermore, this study provided a quantitative atlas of poly(A) usage. Several hundred differential poly(A) sites in the rhizome-root system were identified. Taken together, these results suggest that post-transcriptional regulation may potentially have a vital role in the underground rhizome-root system
    corecore