14,226 research outputs found

    The Complexity of Manipulating kk-Approval Elections

    Full text link
    An important problem in computational social choice theory is the complexity of undesirable behavior among agents, such as control, manipulation, and bribery in election systems. These kinds of voting strategies are often tempting at the individual level but disastrous for the agents as a whole. Creating election systems where the determination of such strategies is difficult is thus an important goal. An interesting set of elections is that of scoring protocols. Previous work in this area has demonstrated the complexity of misuse in cases involving a fixed number of candidates, and of specific election systems on unbounded number of candidates such as Borda. In contrast, we take the first step in generalizing the results of computational complexity of election misuse to cases of infinitely many scoring protocols on an unbounded number of candidates. Interesting families of systems include kk-approval and kk-veto elections, in which voters distinguish kk candidates from the candidate set. Our main result is to partition the problems of these families based on their complexity. We do so by showing they are polynomial-time computable, NP-hard, or polynomial-time equivalent to another problem of interest. We also demonstrate a surprising connection between manipulation in election systems and some graph theory problems

    Excitable Delaunay triangulations

    Full text link
    In an excitable Delaunay triangulation every node takes three states (resting, excited and refractory) and updates its state in discrete time depending on a ratio of excited neighbours. All nodes update their states in parallel. By varying excitability of nodes we produce a range of phenomena, including reflection of excitation wave from edge of triangulation, backfire of excitation, branching clusters of excitation and localized excitation domains. Our findings contribute to studies of propagating perturbations and waves in non-crystalline substrates

    The metal insulator transition in cluster dynamical mean field theory: intersite correlation, cluster size, interaction strength, and the location of the transition line

    Full text link
    To gain insight into the physics of the metal insulator transition and the effectiveness of cluster dynamical mean field theory (DMFT) we have used one, two and four site dynamical mean field theory to solve a polaron model of electrons coupled to a classical phonon field. The cluster size dependence of the metal to polaronic insulator phase boundary is determined along with electron spectral functions and cluster correlation functions. Pronounced cluster size effects start to occur in the intermediate coupling region in which the cluster calculation leads to a gap and the single-site approximation does not. Differences (in particular a sharper band edge) persist in the strong coupling regime. A partial density of states is defined encoding a generalized nesting property of the band structure; variations in this density of states account for differences between the dynamical cluster approximation and the cellular-DMFT implementations of cluster DMFT, and for differences in behavior between the single band models appropriate for cuprates and the multiband models appropriate for manganites. A pole or strong resonance in the self energy is associated with insulating states; the momentum dependence of the pole is found to distinguish between Slater-like and Mott-like mechanisms for metal insulator transition. Implications for the theoretical treatment of doped manganites are discussed.Comment: 28 pages (single column, double space) 15 figure

    Implications of the Low-Temperature Instability of Dynamical Mean Theory for Double Exchange Systems

    Full text link
    The single-site dynamical mean field theory approximation to the double exchange model is found to exhibit a previously unnoticed instability, in which a well-defined ground state which is stable against small perturbations is found to be unstable to large-amplitude but purely local fluctuations. The instability is shown to arise either from phase separation or, in a narrow parameter regime, from the presence of a competing phase. The instability is therefore suggested as a computationally inexpensive means of locating regimes of parameter space in which phase separation occurs.Comment: 5 pages 5 figure

    Symmetrized importance samplers for stochastic differential equations

    Get PDF
    We study a class of importance sampling methods for stochastic differential equations (SDEs). A small-noise analysis is performed, and the results suggest that a simple symmetrization procedure can significantly improve the performance of our importance sampling schemes when the noise is not too large. We demonstrate that this is indeed the case for a number of linear and nonlinear examples. Potential applications, e.g., data assimilation, are discussed.Comment: Added brief discussion of Hamilton-Jacobi equation. Also made various minor corrections. To appear in Communciations in Applied Mathematics and Computational Scienc
    • …
    corecore