68 research outputs found

    Raman Spectroscopy of DLC/a-Si Bilayer Film Prepared by Pulsed Filtered Cathodic Arc

    Get PDF
    DLC/a-Si bilayer film was deposited on germanium substrate. The a-Si layer, a seed layer, was firstly deposited on the substrate using DC magnetron sputtering and DLC layer was then deposited on the a-Si layer using pulsed filtered cathodic arc method. The bilayer films were deposited with different DLC/a-Si thickness ratios, including 2/2, 2/6, 4/4, 6/2, and 9/6. The effect of DLC/a-Si thickness ratios on the sp3 content of DLC was analyzed by Raman spectroscopy. The results show that a-Si layer has no effect on the structure of DLC film. Furthermore, the upper shift in G wavenumber and the decrease in ID/IG inform that sp3 content of the film is directly proportional to DLC thickness. The plot modified from the three-stage model informed that the structural characteristics of DLC/a-Si bilayer films are located close to the tetrahedral amorphous carbon. This information may be important for analyzing and developing bilayer protective films for future hard disk drive

    Physical and optical properties of the SLS glass doped with low Cr2O3 concentrations

    Get PDF
    AbstractThe aim of this work is to study the physical properties of Cr2O3 -doped soda lime silicate glass in batch of 25Na2O: 10CaO: (65-x)SiO2: xCr2O3 where 0.00 ≤ x ≤ 0.05 mol%. The glass samples were prepared by normal meltquenching technique with 1500°C melting-temperature. The amorphous structure of glass samples were confirmed by X-Ray Diffractrometer (XRD) analysis. The density of glass samples were increased with increasing of Cr2O3 concentration due to the higher molecular weight of Cr2O3 (Mw.=151.9904g/mol) than SiO2 (Mw.=60.0843g/mol). On the other hand, the molar volumes were decreased. It means that network of glasses were compressed because of the substitution of Cr2O3 in the place of SiO2. The refractive index of glass samples was increased. The optical spectra of glass samples were also investigated

    Irradiation effect on natural quartz from Zambia

    Get PDF
    AbstractThe effects of high gamma-irradiation doses (50-300 kGy) on natural quartz crystals have been investigated by ESR technique. The ESR spectrum carried out at low temperature (120K) displayed lines group of Al center. The higher amount of gamma doses affected ESR spectra by increasing of intensity, especially the increasing intensity in the range of the Al center. The complex ESR spectra of Al center observed to contain 9 peaks that did not reach saturation even though the level of gamma-irradiation dose was as high as 300 kGy. The total area under ESR spectra of Al center was increased as a polynomial function of irradiated dose. The overlapping of ESR signal from defects in the range of Al center was also investigated

    Proteome Analyses of Cellular Proteins in Methicillin-Resistant Staphylococcus aureus Treated with Rhodomyrtone, a Novel Antibiotic Candidate

    Get PDF
    The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC) values ranged from 31.25–62.5 µg/ml, and the minimal bactericidal concentration (MBC) was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5–125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml) affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections

    Native New Zealand plants with inhibitory activity towards Mycobacterium tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plants have long been investigated as a source of antibiotics and other bioactives for the treatment of human disease. New Zealand contains a diverse and unique flora, however, few of its endemic plants have been used to treat tuberculosis. One plant, <it>Laurelia novae-zelandiae</it>, was reportedly used by indigenous Maori for the treatment of tubercular lesions.</p> <p>Methods</p> <p><it>Laurelia novae-zelandiae </it>and 44 other native plants were tested for direct anti-bacterial activity. Plants were extracted with different solvents and extracts screened for inhibition of the surrogate species, <it>Mycobacterium smegmatis</it>. Active plant samples were then tested for bacteriostatic activity towards <it>M. tuberculosis </it>and other clinically-important species.</p> <p>Results</p> <p>Extracts of six native plants were active against <it>M. smegmatis</it>. Many of these were also inhibitory towards <it>M. tuberculosis </it>including <it>Laurelia novae-zelandiae </it>(Pukatea). <it>M. excelsa </it>(Pohutukawa) was the only plant extract tested that was active against <it>Staphylococcus aureus</it>.</p> <p>Conclusions</p> <p>Our data provide support for the traditional use of Pukatea in treating tuberculosis. In addition, our analyses indicate that other native plant species possess antibiotic activity.</p

    Circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells and arterial function in patients with beta-thalassaemia major

    Get PDF
    Arterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells

    Busulphan-Cyclophosphamide Cause Endothelial Injury, Remodeling of Resistance Arteries and Enhanced Expression of Endothelial Nitric Oxide Synthase

    Get PDF
    Stem cell transplantation (SCT) is a curative treatment for malignant and non malignant diseases. However, transplantation-related complications including cardiovascular disease deteriorate the clinical outcome and quality of life. We have investigated the acute effects of conditioning regimen on the pharmacology, physiology and structure of large elastic arteries and small resistance-sized arteries in a SCT mouse model. Mesenteric resistance arteries and aorta were dissected from Balb/c mice conditioned with busulphan (Bu) and cyclophosphamide (Cy). In vitro isometric force development and pharmacology, in combination with RT-PCR, Western blotting and electron microscopy were used to study vascular properties. Compared with controls, mesenteric resistance arteries from the Bu-Cy group had larger internal circumference, showed enhanced endothelium mediated relaxation and increased expression of endothelial nitric oxide synthase (eNOS). Bu-Cy treated animals had lower mean blood pressure and signs of endothelial injury. Aortas of treated animals had a higher reactivity to noradrenaline. We conclude that short-term consequences of Bu-Cy treatment divergently affect large and small arteries of the cardiovascular system. The increased noradrenaline reactivity of large elastic arteries was not associated with increased blood pressure at rest. Instead, Bu-Cy treatment lowered blood pressure via augmented microvascular endothelial dependent relaxation, increased expression of vascular eNOS and remodeling toward a larger lumen. The changes in the properties of resistance arteries can be associated with direct effects of the compounds on vascular wall or possibly indirectly induced via altered translational activity associated with the reduced hematocrit and shear stress. This study contributes to understanding the mechanisms that underlie the early effects of conditioning regimen on resistance arteries and may help in designing further investigations to understand the late effects on vascular system

    A deep AlTiC dry etching for fabrication of Burnish and Glide slider head

    Get PDF
    AbstractAs a commercial photolithography dry film is not possible to achieve a very deep (greater than 30μm) step etch, to fabricate Burnish head and Glide head in slider fabrication section of hard disk drive industry, by dry etching of ceramic Al2O3-TiC material due to the low etch selectivity of substrate to dry film mask. This paper aim to investigate the etch selectivity of substrate to hard metal mask which have high potential that significantly to increase the etch selectivity allowable to produce the 30μm AlTiC etch depth and etch rate of the two type of fluorine-based plasma; SF6 plasma versus CF4 plasma are also explored
    • …
    corecore