4 research outputs found

    Simple Post Annealing-Free Method for Fabricating Uniform, Large Grain-Sized, and Highly Crystalline Perovskite Films

    No full text
    We report a simple post annealing-free (PAF) method for making uniform, large grain-sized, and highly crystalline triple cation perovskite films. In this simple process, a perovskite precursor solution was spin-coated onto a TiO2 mesoporous substrate and as an antisolvent, diethyl ether (DEE) was subsequently dripped onto the film during spinning to produce an intermediate phase (IP) of perovskite film. This IP was immediately immersed into a DEE bath at room temperature for only 1 min in replacement of the conventional post annealing (PA) treatment. The as-prepared PAF film was characterized by X-ray powder diffraction, UV vis absorption spectroscopy, fourier transform infrared spectroscopy, scanning electron microscopy, atomic-force microscopy, and photoluminescence spectroscopy. The overall power conversion efficiency (PCE) of the PAF devices was in the range of 18.8-19.5%, which is comparable with the reported PA devices (17.2-18.1%), mainly due to the J(SC) and the FF values, caused by the high absorption ability and the large crystal size with better surface smoothness in the PAF film. This efficiency is the highest reported for perovskite deposition by PAF methods. This new method enables reducing the device fabrication time at room temperature, which will reduce the cost of manufacturing efficient perovskite solar cells.1115sciescopu

    Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (n= 21.1%)

    No full text
    Understanding and controlling interfacial charge transfer at the heterojunction of optoelectronic devices is currently receiving extensive interest. Here, we study the parameters that can influence the electron extraction in planar perovskite solar cells (P-PSCs) using spin-coated SnO2 and TiO2, anodized-TiO2 (a-TiO2), and bilayered electron transport layers (ETL) composed of SnO2 and TiO2 or SnO2 on a-TiO2 (SnO2@a-TiO2). These are the varied free energy difference (ΔG) values between the ETL and perovskites, electron mobility (μe) of the ETL, and quality of physical contact between the ETL and fluorine-doped tin oxide (FTO). Among the various ETLs, the bilayered ETL (SnO2@a-TiO2) gives a large ΔG as well as defect-free physical contact. The resulting P-PSC exhibits a PCE of 21.1% and stabilized efficiency of 20.2% with reduced hysteresis. This result emphasizes that a large free energy difference (ΔG) value plays an important role in electron extraction. More importantly, the defect-free physical contact is also crucial for achieving improved electron extraction.1127sciescopu

    Enhanced Efficiency and Stability of an Aqueous Lead-Nitrate-Based Organometallic Perovskite Solar Cell

    No full text
    We investigate the stability of an active organometallic perovskite layer prepared from a two-step solution procedure, including spin coating of aqueous lead nitrate (Pb(NO3)(2)) as a Pb2+ source and sequential dipping into a methylammonium iodide (CH3NH3I) solution. The conversion of CH3NH3PbI3 from a uniform Pb(NO3)2 layer generates PbI2-free and large-grain perovskite crystallites owing to an intermediate ion exchange reaction step, resulting in improved humidity resistance and, thereby, improved long-term stability with 93% of the initial power conversion efficiency (PCE) after a period of 20 days. The conventional fast-converted PbI2-dimethylformamide solution system leaves small amounts of intrinsic PbI2 residue on the resulting perovskite and MAPbI(3) crystallites with uncontrollable sizes. This accelerates the generation of PbI2 and the decomposition of the perovskite layer, resulting in poor stability with less than 60% of the initial PCE after a period of 20 days.1142sciescopu

    Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells

    No full text
    We report a dopant-free polymeric hole transport material (HTM) that is based on benzo[1,2-b:4,5:b']-dithiophene and 2,1,3-benzothiadiazole, which results in highly efficient and stable perovskite solar cells (similar to 17.3% for over 1400 h at 75% humidity). The HTM comprises a random copolymer (RCP), which is characterized using UV-vis absorption spectroscopy, cyclic voltammetry, space-charge-limited current, and grazing-incidence wide-angle X-ray scattering. The RCP-based perovskite solar cell exhibits the highest efficiency (17.3%) in the absence of dopants [lithium bis (trifluoromethanesulfonyl) imide and tert-butylpyridine]. The observed efficiency is attributed to a deep HOMO energy level and high hole mobility. In addition, the long-term stability of the device is dramatically improved by avoiding deliquescent or hygroscopic dopants and by introducing a hydrophobic polymer layer. RCP devices maintain their initial efficiency for over 1400 h at 75% humidity, whereas devices made of HTMs with additives fail after 900 h.1111678Nsciescopu
    corecore