305 research outputs found

    COACH: Collaborative Accessibility Approach in Mobile Navigation System for the Visually Impaired

    Get PDF
    Due to the shortage of geographical information suitable for the visually impaired, the current navigation systems fail to provide high quality performance. The results of an international survey on the user needs are discussed in this article. A collaborative accessibility approach (COACH) is proposed to not only extend accessible geo-information, but also offer an opportunity to share experiences among peers. Related topics are addressed, like map data, multimodal annotation, and privacy

    Size-resolved particulate matter composition in Beijing during pollution and dust events

    Get PDF
    Each spring, Beijing, China, experiences dust storms which cause high particulate matter concentrations. Beijing also has many anthropogenic sources of particulate matter including the large Capitol Steel Company. On the basis of measured size segregated, speciated particulate matter concentrations, and calculated back trajectories, three types of pollution events occurred in Beijing from 22 March to 1 April 2001: dust storms, urban pollution events, and an industrial pollution event. For each event type, the source of each measured element is determined to be soil or anthropogenic and profiles are created that characterize the particulate matter composition. Dust storms are associated with winds traveling from desert regions and high total suspended particle (TSP) and PM2.5 concentrations. Sixty-two percent of TSP is due to elements with oxides and 98% of that is from soil. Urban pollution events have smaller particulate concentrations but 49% of the TSP is from soil, indicating that dust is a major component of the particulate matter even when there is not an active dust storm. The industrial pollution event is characterized by winds from the southwest, the location of the Capitol Steel Company, and high particulate concentrations. PM2.5 mass and acidic ion concentrations are highest during the industrial pollution event as are Mn, Zn, As, Rb, Cd, Cs and Pb concentrations. These elements can be used as tracers for industrial pollution from the steel mill complex. The industrial pollution is potentially more detrimental to human health than dust storms due to higher PM2.5 concentrations and higher acidic ion and toxic particulate matter concentrations

    SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes

    Full text link
    Multi-object tracking in sports scenes plays a critical role in gathering players statistics, supporting further analysis, such as automatic tactical analysis. Yet existing MOT benchmarks cast little attention on the domain, limiting its development. In this work, we present a new large-scale multi-object tracking dataset in diverse sports scenes, coined as \emph{SportsMOT}, where all players on the court are supposed to be tracked. It consists of 240 video sequences, over 150K frames (almost 15\times MOT17) and over 1.6M bounding boxes (3\times MOT17) collected from 3 sports categories, including basketball, volleyball and football. Our dataset is characterized with two key properties: 1) fast and variable-speed motion and 2) similar yet distinguishable appearance. We expect SportsMOT to encourage the MOT trackers to promote in both motion-based association and appearance-based association. We benchmark several state-of-the-art trackers and reveal the key challenge of SportsMOT lies in object association. To alleviate the issue, we further propose a new multi-object tracking framework, termed as \emph{MixSort}, introducing a MixFormer-like structure as an auxiliary association model to prevailing tracking-by-detection trackers. By integrating the customized appearance-based association with the original motion-based association, MixSort achieves state-of-the-art performance on SportsMOT and MOT17. Based on MixSort, we give an in-depth analysis and provide some profound insights into SportsMOT. The dataset and code will be available at https://deeperaction.github.io/datasets/sportsmot.html

    Seasonal trends in PM2.5 source contributions in Beijing, China

    Get PDF
    The 24-h PM2.5 samples (particles with an aerodynamic diameter of 2.5 μm or less) were taken at 6-day intervals at five urban and rural sites simultaneously in Beijing, China for 1 month in each quarter of calendar year 2000. Samples at each site were combined into a monthly composite for the organic tracer analysis by GC/MS (gas chromatography/mass spectrometry). Compared to the data obtained from other metropolitan cities in the US, the PM2.5 mass and fine organic carbon (OC) concentrations in Beijing were much higher with an annual average of 101 and 20.9 μg m^(−3), respectively. Over one hundred organic compounds including unique tracers for important sources were quantified in PM2.5 in Beijing. Source apportionment of fine OC was conducted using chemical mass balance receptor model (CMB) in combination with particle-phase organic compounds as fitting tracers. Carbonaceous aerosols and major ions (sulfate, nitrate and ammonium) constituted 69% of PM2.5 mass on average. The major sources of PM2.5 mass in Beijing averaged over five sites on an annual basis were determined as dust (20%), secondary sulfate (17%), secondary nitrate (10%), coal combustion (7%), diesel and gasoline exhaust (7%), secondary ammonium (6%), biomass aerosol (6%), cigarette smoke (1%), and vegetative detritus (1%). The lowest PM2.5 mass concentration was found in January (60.9 μg m^(−3)), but the contribution of carbonaceous aerosol to PM2.5 mass was maximal during this season, accounting for 57% of the mass. During cold heating season, the contributions from coal combustion and biomass aerosol to PM2.5 mass increased, accounting for 20.9% of fine particle mass in October and 24.5% in January. The contribution of the biomass aerosols peaked in the fall. In April 2000, the impact of dust storms was so significant that dust alone constituted 36% of PM2.5 mass. On average, the model resolved 88% of the sources of the PM2.5 mass concentrations in Beijing

    Characterization of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for anthropogenic pollution effects

    Get PDF
    Isoprene is the most abundant non-methane volatile organic compound (VOC) and the largest contributor to secondary organic aerosol (SOA) burden on a global scale. In order to examine the influence of high concentrations of anthropogenic pollutants on isoprene-derived SOA (SOA(i)) formation, summertime PM2.5 filter samples were collected with a three-hour sampling interval at a rural site in the North China Plain (NCP), and determined for SOA(i) tracers and other chemical species. RO2+NO pathway derived 2-methylglyceric acid presented a relatively higher contribution to the SOA, due to the high-NOx (similar to 20 ppb) conditions in the NCP that suppressed the reactive uptake of RO2+HO2 reaction derived isoprene epoxydiols. Compared to particle acidity and water content, sulfate plays a dominant role in the heterogeneous formation process of SOA(i). Diurnal variation and correlation of 2-methyltetrols with ozone suggested an important effect of isoprene ozonolysis on SOA(i) formation. SOA(i) increased linearly with levoglucosan during June 10-18, which can be attributed to an increasing emission of isoprene caused by the field burning of wheat straw and a favorable aqueous SOA formation during the aging process of the biomass burning plume. Our results suggested that isoprene oxidation is highly influenced by intensive anthropogenic activities in the NCP

    Workshop: Accessible Interaction for Visually Impaired People

    Get PDF
    International audienceImproving access to information and technology for visually impaired people is a significant challenge within the field of Human-Computer Interaction. In the last decades assistive technology has helped to increase the autonomy and quality of life of the 285 million visually impaired people worldwide. Interactive technologies can support visually impaired people in many tasks, such as navigation and wayfinding, reading and writing, access to education, or even gaming (Brock et al. 2015, Scheibler 2014). It also helps disabled people to stay in touch with friends and participate in social networks and communities (van der Geest et al. 2014).Although legal regulations on accessibility (e.g. BGG 2003) and detailed W3C-guidelines (2009) exist since many years, the majority of websites, location based services, e-learning applications and games are still not designed and programmed to be accessible, even with assistive technology (vgl. AbleGamers Foundation 2012, Köhlmann 2014, Michalska et al. 2014, Wentz & Lazar 2011). In addition, the specific needs of people with different forms of visual impairment and blindness are not sufficiently considered (Kleynhans & Fourie 2014).Hence, this workshop concerns accessibility of all kinds of digital media and services. Besides dedicated assistive technologies, audio- and gesture-based interfaces are also of interest in this context, because they work without visual interfaces and can generate an innovative userexperience for sighted as well as blind users. Some audio-based computer games are already designed as special kind of game for sighted and blind players (Collins 2013, Friberg & Gärdenfors 2008)

    Size-resolved particulate matter composition in Beijing during pollution and dust events

    Get PDF
    Each spring, Beijing, China, experiences dust storms which cause high particulate matter concentrations. Beijing also has many anthropogenic sources of particulate matter including the large Capitol Steel Company. On the basis of measured size segregated, speciated particulate matter concentrations, and calculated back trajectories, three types of pollution events occurred in Beijing from 22 March to 1 April 2001: dust storms, urban pollution events, and an industrial pollution event. For each event type, the source of each measured element is determined to be soil or anthropogenic and profiles are created that characterize the particulate matter composition. Dust storms are associated with winds traveling from desert regions and high total suspended particle (TSP) and PM2.5 concentrations. Sixty-two percent of TSP is due to elements with oxides and 98% of that is from soil. Urban pollution events have smaller particulate concentrations but 49% of the TSP is from soil, indicating that dust is a major component of the particulate matter even when there is not an active dust storm. The industrial pollution event is characterized by winds from the southwest, the location of the Capitol Steel Company, and high particulate concentrations. PM2.5 mass and acidic ion concentrations are highest during the industrial pollution event as are Mn, Zn, As, Rb, Cd, Cs and Pb concentrations. These elements can be used as tracers for industrial pollution from the steel mill complex. The industrial pollution is potentially more detrimental to human health than dust storms due to higher PM2.5 concentrations and higher acidic ion and toxic particulate matter concentrations
    corecore