41 research outputs found

    Food effects on statolith composition of the common cuttlefish (Sepia officinalis)

    Get PDF
    The concentration of trace elements within cephalopod statoliths can provide a record of the environmental characteristics at the time of calcification. To reconstruct accurately the environmental characteristics at the time of calcification, it is important to understand the influence of as many factors as possible. To test the hypothesis that the elemental composition of cuttlefish statoliths could be influenced by diet, juvenile Sepia officinalis were fed either shrimp Crangon sp. or fish Clupea harengus under equal temperature and salinity regimes in laboratory experiments. Element concentrations in different regions of the statoliths (core–lateral dome–rostrum) were determined using laser ablation inductively coupled plasma mass spectrometry (LA- ICPMS). The ratios of Sr/Ca, Ba/Ca, Mn/Ca and Y/Ca in the statolith’s lateral dome of shrimp-fed cuttlefish were significantly higher than in the statolith’s lateral dome of fish-fed cuttlefish. Moreover, significant differences between statolith regions were found for all analysed elements. The fact that diet adds a considerable variation especially to Sr/Ca and Ba/Ca must be taken into account in future micro-chemical statolith studies targeting cephalopod’s life history

    Multiple Sclerosis in the Community: A Selective Survey

    No full text

    Influence of temperature and salinity on the trace element incorporation into statoliths of the common cuttlefish (Sepia officinalis)

    Get PDF
    The use of statolith chemistry to trace migration pathways and distinguish populations of cephalopods is based on the assumption that the elemental composition of statoliths is influenced by physicochemical properties of the ambient environment. However, such influences have not been investigated experimentally up until now. This study presents the first microchemical analyses of cephalopod statoliths obtained from laboratory experiments under different controlled temperature and salinity conditions. Our results show that statolith chemical composition is strongly related to both salinity and temperature in ambient waters. The Ba/Ca ratio is negatively related to temperature and shows no relation to salinity. The I/Ca ratio is positively related to temperature and negatively to salinity. No Sr/Ca relation was found to either salinity or temperature, suggesting that the well-established proxy strontium is not as useful in cephalopod statoliths as in other biomineralized aragonites. Microanalysis of trace elements, however, shows an enormous potential for field studies on distribution, migration and stock separation of cephalopods. Furthermore, Synchrotron X-ray Fluorescence Analysis is introduced as a promising novel method for statolith analysis, providing a spatial resolution of typically 10–15 μm combined with detection limits down to 0.5 ppm
    corecore