2 research outputs found

    A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments

    No full text
    Climate-induced warming increasingly leads to degradation of high-alpine permafrost. In order to develop early warning systems for imminent slope destabilization, knowledge about hydrological flow processes in the subsurface is urgently needed. Due to the fast dynamics associated with slope failures, non- or minimally invasive methods are required for inexpensive and timely characterization and monitoring of potential failure sites to allow in-time responses. These requirements can potentially be met by geophysical methods usually applied in near-surface geophysical settings, such as electrical resistivity tomography (ERT), ground-penetrating radar (GPR), various seismic methods, and self-potential (SP) measurements. While ERT and GPR have their primary uses in detecting lithological subsurface structure and liquid water/ice content variations, SP measurements are sensitive to active water flow in the subsurface. Combined, these methods provide huge potential to monitor the dynamic hydrological evolution of permafrost systems. However, while conceptually simple, the technical application of the SP method in high-alpine mountain regions is challenging, especially if spatially resolved information is required. We here report on the design, construction, and testing phase of a multi-electrode SP measurement system aimed at characterizing surface runoff and meltwater flow on the Schilthorn, Bernese Alps, Switzerland. Design requirements for a year-round measurement system are discussed; the hardware and software of the constructed system, as well as test measurements are presented, including detailed quality-assessment studies. On-site noise measurements and one laboratory experiment on freezing and thawing characteristics of the SP electrodes provide supporting information. It was found that a detailed quality assessment of the measured data is important for such challenging field site operations, requiring adapted measurement schemes to allow for the extraction of robust data in light of an environment highly contaminated by anthropogenic and natural noise components. Finally, possible short- and long-term improvements to the system are discussed and recommendations for future installations are developed

    Initiation of an international database of geoelectrical surveys on permafrost to promote data sharing, survey repetition and standardized data reprocessing 

    No full text
    Geoelectrical methods are widely used for permafrost investigations by research groups, government agencies and industry. Electrical Resistivity Tomography (ERT) surveys are typically performed only once to detect the presence or absence of permafrost. Exchange of data and expertise among users is limited and usually occurs bilaterally. Neither complete information about the existence of geophysical surveys on permafrost nor the data itself is available on a global scale. Given the potential gain for identifying permafrost evidence and their spatiotemporal changes, there is a strong need for coordinated efforts regarding data, metadata, guidelines, and expertise exchange. Repetition of ERT surveys is rare, even though it could provide a quantitative spatio-temporal measure of permafrost evolution, helping to quantify the effects of climate change at local (where the ERT survey takes place) and global scales (due to the inventory).Our International Permafrost Association (IPA) action group (2021-2023) has the main objective of bringing together the international community interested in geoelectrical measurements on permafrost and laying the foundations for an operational International Database of Geoelectrical Surveys on Permafrost (IDGSP). Our contribution presents a new international database of electrical resistivity datasets on permafrost. The core members of our action group represent more than 10 research groups, who have already contributed their own metadata (currently > 200 profiles covering 15 countries). These metadata will be fully publicly accessible in the near future whereas access to the resistivity data may be either public or restricted. Thanks to this open access policy, we aim at increasing the level of transparency, encouraging further data providersand fostering survey repetitions by new users.The database is set up on a virtual machine hosted by the University of Fribourg. The advanced open-source relational database system PostgreSQL is used to program the database. Homogenization and standardization of a large number of data and metadata are among thegreatest challenges, yet are essential to a structured relational database. In this contribution, we present the structure of the database, statistics of the metadata uploaded, as well as first results of repetitions from legacy geoelectrical measurements on permafrost. Guidelines and strategiesare developed to handle repetition challenges such as changing survey configuration, changing geometry or inaccurate/missing metadata. First steps toward transparent and reproducible automated filtering and inversion of a great number of datasets will also be presented. Byarchiving geoelectrical data on permafrost, the ambition of this project is the reanalysis of the full database and its climatic interpretation
    corecore