31 research outputs found

    Genetic and Structural Analyses of Cytoplasmic Filaments of Wild-Type Treponema phagedenis and a Flagellar Filament-Deficient Mutant

    Get PDF
    Unique cytoplasmic filaments are found in the treponeme genus of spirochete bacteria. Their function is unknown, but their location underneath the periplasmic flagellar filaments (PFF) suggests a role in motility and/or cell structure. To better understand these unique structures, the gene coding for the cytoplasmic filaments, cfpA, was identified in various treponemal species. Treponema phagedenis cfpA was 2,037 nucleotides long, and the encoded polypeptide showed 78 to 100% amino acid sequence identity with the partial sequence of CfpA from T. denticola, T. vincentii, and T. pallidum subsp. pertenue. Wild-type T. phagedenis and a PFF-deficient isolate were analyzed by electron microscopy to assess the structural relationship of the cytoplasmic filaments and the PFF. The number of cytoplasmic filaments per cell of T. phagedenis (mean, 5.7) was compared with the number of PFF at each end of the cell (mean, 4.7); the results suggest that there is no direct one-to-one correlation at the cell end. Moreover, a structural link between these structures could not be demonstrated. The cytoplasmic filaments were also analyzed by electron microscopy at different stages of cell growth; this analysis revealed that they are cleaved before or during septum formation and before the nascent formation of PFF. A PFF-deficient mutant of T. phagedenis possessed cytoplasmic filaments similar to those of the wild type, suggesting that intact PFF are not required for their assembly and regulation. The extensive conservation of CfpA among pathogenic spirochetes suggests an important function, and structural analysis suggests that it is unlikely that the cytoplasmic filaments and the flagellar apparatus are physically linked

    Native cellular architecture of Treponema denticola revealed by cryo-electron tomography

    Get PDF
    Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present. This suggests that a structural change occurs in the peptidoglycan layer to accommodate the presence of the flagella. In dividing cells, the flagellar filaments were found to bridge the cytoplasmic cylinder constriction site. Cytoplasmic filaments, adjacent to the inner membrane, run parallel to the tightly organized flagellar filaments. The cytoplasmic filaments may be anchored by a narrow plate-like structure. The tapering of the cell ends was conserved between cells, with a patella-shaped structure observed in the periplasm at the tip of each cytoplasmic cylinder. Several incompletely characterized structures have been observed in the periplasm between dividing cells, including a cable-like structure linking two cytoplasmic cylinders and complex foil-shaped structures

    Tomographic reconstruction of treponemal cytoplasmic filaments reveals novel bridging and anchoring components

    Get PDF
    An understanding of the involvement of bacterial cytoplasmic filaments in cell division requires the elucidation of the structural organization of those filamentous structures. Treponemal cytoplasmic filaments are composed of one protein, CfpA, and have been demonstrated to be involved in cell division. In this study, we used electron tomography to show that the filaments are part of a complex with a novel molecular organization that includes at least two distinct features decorating the filaments. One set of components appears to anchor the filaments to the cytoplasmic membrane. The other set of components appears to bridge the cytoplasmic filaments on the cytoplasmic side, and to be involved in the interfilament spacing within the cell. The filaments occupy between 3 and 18% of the inner surface of the cytoplasmic membrane. These results reveal a novel filamentous molecular organization of independent filaments linked by bridges and continuously anchored to the membrane

    Native cellular architecture of Treponema denticola revealed by cryo-electron tomography

    Get PDF
    Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present. This suggests that a structural change occurs in the peptidoglycan layer to accommodate the presence of the flagella. In dividing cells, the flagellar filaments were found to bridge the cytoplasmic cylinder constriction site. Cytoplasmic filaments, adjacent to the inner membrane, run parallel to the tightly organized flagellar filaments. The cytoplasmic filaments may be anchored by a narrow plate-like structure. The tapering of the cell ends was conserved between cells, with a patella-shaped structure observed in the periplasm at the tip of each cytoplasmic cylinder. Several incompletely characterized structures have been observed in the periplasm between dividing cells, including a cable-like structure linking two cytoplasmic cylinders and complex foil-shaped structures

    Periplasm Organization in \u3ci\u3eTreponema denticola\u3c/i\u3e as Studied by Cryo-electron Tomography

    Get PDF
    As a spirochete, the genus Treponema is one of the few major bacterial groups whose natural phylogenic relationships are evident at the level of gross phenotypic characteristics such as their morphology. Treponema spp. are highly invasive due to their unique motility in dense media, and their ability to penetrate cell layers [1]. This feature is associated with the helical cell body and the presence of flagellar filaments in the periplasm [2]. Treponema denticola is an oral pathogen involved in endodontic infections and periodontal diseases. The presence and quantity of T. denticola in the subgingival biofilm is correlated with the severity of periodontal disease and tissue destruction [3,4]. The organism has also been detected in 75% of severe endodontic abscesses [5]. A better understanding of Treponema ultrastructure and motility will aid development of new strategies to control infection. Because of the similarity in ultrastructural organization among spirochetes, knowledge gained from T. denticola can be applied to other spirochetes causing diseases in human and animals (syphilis, digital dermatitis, Lyme disease, relapsing fever, leptospirosis, etc.)

    Tomographic reconstruction of treponemal cytoplasmic filaments reveals novel bridging and anchoring components

    Get PDF
    An understanding of the involvement of bacterial cytoplasmic filaments in cell division requires the elucidation of the structural organization of those filamentous structures. Treponemal cytoplasmic filaments are composed of one protein, CfpA, and have been demonstrated to be involved in cell division. In this study, we used electron tomography to show that the filaments are part of a complex with a novel molecular organization that includes at least two distinct features decorating the filaments. One set of components appears to anchor the filaments to the cytoplasmic membrane. The other set of components appears to bridge the cytoplasmic filaments on the cytoplasmic side, and to be involved in the interfilament spacing within the cell. The filaments occupy between 3 and 18% of the inner surface of the cytoplasmic membrane. These results reveal a novel filamentous molecular organization of independent filaments linked by bridges and continuously anchored to the membrane

    Cryo-Electron Tomography Elucidates the Molecular Architecture of Treponema pallidum, the Syphilis Spirochete

    Get PDF
    Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure’s fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete’s complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator–P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG

    Periplasm Organization in \u3ci\u3eTreponema denticola\u3c/i\u3e as Studied by Cryo-electron Tomography

    Get PDF
    As a spirochete, the genus Treponema is one of the few major bacterial groups whose natural phylogenic relationships are evident at the level of gross phenotypic characteristics such as their morphology. Treponema spp. are highly invasive due to their unique motility in dense media, and their ability to penetrate cell layers [1]. This feature is associated with the helical cell body and the presence of flagellar filaments in the periplasm [2]. Treponema denticola is an oral pathogen involved in endodontic infections and periodontal diseases. The presence and quantity of T. denticola in the subgingival biofilm is correlated with the severity of periodontal disease and tissue destruction [3,4]. The organism has also been detected in 75% of severe endodontic abscesses [5]. A better understanding of Treponema ultrastructure and motility will aid development of new strategies to control infection. Because of the similarity in ultrastructural organization among spirochetes, knowledge gained from T. denticola can be applied to other spirochetes causing diseases in human and animals (syphilis, digital dermatitis, Lyme disease, relapsing fever, leptospirosis, etc.)

    Complementation of a Treponema denticola flgE Mutant with a Novel Coumermycin A1-Resistant T. denticola Shuttle Vector System

    No full text
    By using the mutated gyrB gene from a spontaneous coumermycin A1-resistant Treponema denticola, an Escherichia coli-T. denticola shuttle vector that renders T. denticola resistant to coumermycin was constructed. The complete T. denticola flgE gene was cloned into the shuttle vector pKMCou, and the vector was transformed into the T. denticola ATCC 33520 flgE erythromycin-resistant knockout mutant HL210. The coumermycin-resistant transformants were motile and restored FlgE activity. This complementation system should prove useful in studying the virulence factors of T. denticola and uncultivable pathogenic spirochetes
    corecore