288 research outputs found

    Net photosynthetic CO2 assimilation: more than just CO2 and O2 reduction cycles

    Get PDF
    Net photosynthetic assimilation in C3 plants is mostly viewed as a simple balance between CO2 fixation by Rubisco‐catalyzed carboxylation and CO2 production by photorespiration (and to a lower extent, by day respiration) that can be easily manipulated during gas exchange experiments using the CO2 : O2 ratio of the environment. However, it now becomes clear that it is not so simple, because the photosynthetic response to gaseous conditions involves ‘ancillary’ metabolisms, even in the short‐term. That is, carbon and nitrogen utilization by pathways other than the Calvin cycle and the photorespiratory cycle, as well as rapid signaling events, can influence the observed rate of net photosynthesis. The potential impact of such ancillary metabolisms is assessed as well as how it must be taken into account to avoid misinterpretation of photosynthetic CO2 response curves or low O2 effects in C3 leaves

    Adaptations of nitrogen metabolism to oxygen deprivation in plants

    Get PDF

    Caractérisation du transporteur de nitrate à double affinité, MtNPF6.8 (MtNRT1.3), de Medicago truncatula : rÎles dans le transport et la perception du signal nitrate

    Get PDF
    Nitrate, a major nitrogen source for most plants, is not only a nutrient but also a signaling molecule. However, there are contrasting responses to nitrate between different higher plants. In the model legume Medicago truncatula, nitrate has an inhibitory effect on the primary root growth in post-germination phase. A quantitative genetic study has shown that a nitrate transporter is localized at the peak of a QTL involved in the primary root growth. Functional characterization of the transporter, named MtNRT1.3 and renamed MtNPF6.8, showed that it encodes a dual affinity nitrate transporter. MtNPF6.8 is likely to participate in the nitrate influx in the plant. After obtaining three knockdown lines by RNA interference, experiments using K15NO3 showed that this transporter is effect involved in nitrate influx related to the inducible low affinity transport system (iLATS). However, mutation in MtNPF6.8 does not any effect on nitrogen metabolism. In addition, studies on the primary root growth have confirmed the involvement of the transporter on phenotypic trait. In wild-type plants, cortical cell size decreased after nitrate treatment, showing that primary root growth was due to this reduced cell elongation. The possibility that ABA also plays a role in mediating this nitrate dependent response is heavily favored. All these results, reinforced by a study of mutants expressing this transporter in A. thaliana, indicate that MtNPF6.8 is a nitrate sensor for Medicago in the post-germination phase, independently of its nitrate transport activity
    • 

    corecore