13,023 research outputs found
Clustering, Angular Size and Dark Energy
The influence of dark matter inhomogeneities on the angular size-redshift
test is investigated for a large class of flat cosmological models driven by
dark energy plus a cold dark matter component (XCDM model). The results are
presented in two steps. First, the mass inhomogeneities are modeled by a
generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is
characterized by a smoothness parameter and a power index ,
and, second, we provide a statistical analysis to angular size data for a large
sample of milliarcsecond compact radio sources. As a general result, we have
found that the parameter is totally unconstrained by this sample of
angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review
Gaudin model and its associated Knizhnik-Zamolodchikov equation
The semiclassical limit of the algebraic Bethe Ansatz for the Izergin-Korepin
19-vertex model is used to solve the theory of Gaudin models associated with
the twisted R-matrix. We find the spectra and eigenvectors of the
independents Gaudin Hamiltonians. We also use the off-shell Bethe Ansatz
method to show how the off-shell Gaudin equation solves the associated
trigonometric system of Knizhnik-Zamolodchikov equations.Comment: 20 pages,no figure, typos corrected, LaTe
Thermodynamics of Decaying Vacuum Cosmologies
The thermodynamic behavior of vacuum decaying cosmologies is investigated
within a manifestly covariant formulation. Such a process corresponds to a
continuous irreversible energy flow from the vacuum component to the created
matter constituents. It is shown that if the specific entropy per particle
remains constant during the process, the equilibrium relations are preserved.
In particular, if the vacuum decays into photons, the energy density and
average number density of photons scale with the temperature as and . The temperature law is determined and a generalized
Planckian type form of the spectrum, which is preserved in the course of the
evolution, is also proposed. Some consequences of these results for decaying
vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon
creation are discussed.Comment: 21 pages, uses LATE
Exact Lyapunov Exponent for Infinite Products of Random Matrices
In this work, we give a rigorous explicit formula for the Lyapunov exponent
for some binary infinite products of random real matrices. All
these products are constructed using only two types of matrices, and ,
which are chosen according to a stochastic process. The matrix is singular,
namely its determinant is zero. This formula is derived by using a particular
decomposition for the matrix , which allows us to write the Lyapunov
exponent as a sum of convergent series. Finally, we show with an example that
the Lyapunov exponent is a discontinuous function of the given parameter.Comment: 1 pages, CPT-93/P.2974,late
Inflationary Models Driven by Adiabatic Matter Creation
The flat inflationary dust universe with matter creation proposed by
Prigogine and coworkers is generalized and its dynamical properties are
reexamined. It is shown that the starting point of these models depends
critically on a dimensionless parameter , closely related to the matter
creation rate . For bigger or smaller than unity flat universes
can emerge, respectively, either like a Big-Bang FRW singularity or as a
Minkowski space-time at . The case corresponds to a de
Sitter-type solution, a fixed point in the phase diagram of the system,
supported by the matter creation process. The curvature effects have also been
investigated. The inflating de Sitter is a universal attractor for all
expanding solutions regardless of the initial conditions as well as of the
curvature parameter.Comment: 25 pages, 2 figures(available from the authors), uses LATE
- …