24,548 research outputs found
On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer
A self-consistent calculation of the density of states and the spectral
density function is performed in a two-dimensional spin-polarized hole system
based on a multiple-scattering approximation. Using parameters corresponding to
GaMnAs thin layers, a wide range of Mn concentrations and hole densities have
been explored to understand the nature, localized or extended, of the
spin-polarized holes at the Fermi level for several values of the average
magnetization of the Mn ystem. We show that, for a certain interval of Mn and
hole densities, an increase on the magnetic order of the Mn ions come together
with a change of the nature of the states at the Fermi level. This fact
provides a delocalization of spin-polarized extended states anti-aligned to the
average Mn magnetization, and a higher spin-polarization of the hole gas. These
results are consistent with the occurrence of ferromagnetism with relatively
high transition temperatures observed in some thin film samples and
multilayered structures of this material.Comment: 3 page
Counterrotation in magnetocentrifugally driven jets and other winds
Rotation measurement in jets from T Tauri stars is a rather difficult task.
Some jets seem to be rotating in a direction opposite to that of the underlying
disk, although it is not yet clear if this affects the totality or part of the
outflows. On the other hand, Ulysses data also suggest that the solar wind may
rotate in two opposite ways between the northern and southern hemispheres. We
show that this result is not as surprising as it may seem and that it emerges
naturally from the ideal MHD equations. Specifically, counterrotating jets
neither contradict the magnetocentrifugal driving of the flow nor prevent
extraction of angular momentum from the disk. The demonstration of this result
is shown by combining the ideal MHD equations for steady axisymmetric flows.
Provided that the jet is decelerated below some given threshold beyond the
Alfven surface, the flow will change its direction of rotation locally or
globally. Counterrotation is also possible for only some layers of the outflow
at specific altitudes along the jet axis. We conclude that the counterrotation
of winds or jets with respect to the source, star or disk, is not in
contradiction with the magnetocentrifugal driving paradigm. This phenomenon may
affect part of the outflow, either in one hemisphere, or only in some of the
outflow layers. From a time-dependent simulation, we illustrate this effect and
show that it may not be permanent.Comment: To appear in ApJ
Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures
The occurrence of inhomogeneous spin-density distribution in multilayered
ferromagnetic diluted magnetic semiconductor nanostructures leads to strong
dependence of the spin-polarized transport properties on these systems. The
spin-dependent mobility, conductivity and resistivity in
(Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a
function of temperature, scaled by the average magnetization of the diluted
magnetic semiconductor layers. An increase of the resistivity near the
transition temperature is obtained. We observed that the spin-polarized
transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure
An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime
A simple approximation formula is derived here for the dependence of the
period of a simple pendulum on amplitude that only requires a pocket calculator
and furnishes an error of less than 0.25% with respect to the exact period. It
is shown that this formula describes the increase of the pendulum period with
amplitude better than other simple formulas found in literature. A good
agreement with experimental data for a low air-resistance pendulum is also
verified and it suggests, together with the current availability/precision of
timers and detectors, that the proposed formula is useful for extending the
pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic
Awaking the vacuum with spheroidal shells
It has been shown that well-behaved spacetimes may induce the vacuum
fluctuations of some nonminimally coupled free scalar fields to go through a
phase of exponential growth. Here, we discuss this mechanism in the context of
spheroidal thin shells emphasizing the consequences of deviations from
spherical symmetry.Comment: 10 pages, 7 figures. Minor changes, version published on Phys. Rev.
From quantum to classical instability in relativistic stars
It has been shown that gravitational fields produced by realistic
classical-matter distributions can force quantum vacuum fluctuations of some
nonminimally coupled free scalar fields to undergo a phase of exponential
growth. The consequences of this unstable phase to the background spacetime
have not been addressed so far due to known difficulties concerning
backreaction in semiclassical gravity. It seems reasonable to believe, however,
that the quantum fluctuations will "classicalize" when they become large
enough, after which backreaction can be treated in the general-relativistic
context. Here we investigate the emergence of a classical regime out of the
quantum field evolution during the unstable phase. By studying the appearance
of classical correlations and loss of quantum coherence, we show that by the
time backreaction becomes important the system already behaves classically.
Consequently, the gravity-induced instability leads naturally to initial
conditions for the eventual classical description of the backreaction. Our
results give support to previous analyses which treat classically the
instability of scalar fields in the spacetime of relativistic stars, regardless
whether the instability is triggered by classical or quantum perturbations.Comment: 16 pages. Minor changes to match the published versio
- …