44,254 research outputs found

    Remarks on a Decrumpling Model of the Universe

    Get PDF
    It is argued that when the dimension of space is a constant integer the full set of Einstein's field equations has more information than the spatial components of Einstein's equation plus the energy conservation law. Applying the former approach to the decrumpling FRW cosmology recently proposed, it is shown that the spacetime singularity cannot be avoided and that turning points are absent. This result is in contrast to the decrumpling nonsingular spacetime model with turning points previously obtained using the latter approach.Comment: 8 pages, latex, no figure

    Ising model spin S=1 on directed Barabasi-Albert networks

    Full text link
    On directed Barabasi-Albert networks with two and seven neighbours selected by each added site, the Ising model with spin S=1/2 was seen not to show a spontaneous magnetisation. Instead, the decay time for flipping of the magnetisation followed an Arrhenius law for Metropolis and Glauber algorithms, but for Wolff cluster flipping the magnetisation decayed exponentially with time. On these networks the Ising model spin S=1 is now studied through Monte Carlo simulations. However, in this model, the order-disorder phase transition is well defined in this system. We have obtained a first-order phase transition for values of connectivity m=2 and m=7 of the directed Barabasi-Albert network.Comment: 8 pages for Int. J. Mod. Phys. C; e-mail: [email protected]

    Majority-vote on directed Small-World networks

    Full text link
    On directed Small-World networks the Majority-vote model with noise is now studied through Monte Carlo simulations. In this model, the order-disorder phase transition of the order parameter is well defined in this system. We calculate the value of the critical noise parameter q_c for several values of rewiring probability p of the directed Small-World network. The critical exponentes beta/nu, gamma/nu and 1/nu were calculated for several values of p.Comment: 16 pages including 9 figures, for Int. J. Mod. Phys.

    Simulation of majority rule disturbed by power-law noise on directed and undirected Barabasi-Albert networks

    Full text link
    On directed and undirected Barabasi-Albert networks the Ising model with spin S=1/2 in the presence of a kind of noise is now studied through Monte Carlo simulations. The noise spectrum P(n) follows a power law, where P(n) is the probability of flipping randomly select n spins at each time step. The noise spectrum P(n) is introduced to mimic the self-organized criticality as a model influence of a complex environment. In this model, different from the square lattice, the order-disorder phase transition of the order parameter is not observed. For directed Barabasi-Albert networks the magnetisation tends to zero exponentially and for undirected Barabasi-Albert networks, it remains constant.Comment: 6 pages including many figures, for Int. J. Mod. Phys.

    Scale Factor Self-Dual Cosmological Models

    Full text link
    We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged K\"ahler sigma models (minimally coupled to gravity) with very specific and interrelated K\"ahler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.Comment: v3, improved and extended version to be published in JHEP; new results added to sect.2; 4 figures; 17pg

    On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer

    Full text link
    A self-consistent calculation of the density of states and the spectral density function is performed in a two-dimensional spin-polarized hole system based on a multiple-scattering approximation. Using parameters corresponding to GaMnAs thin layers, a wide range of Mn concentrations and hole densities have been explored to understand the nature, localized or extended, of the spin-polarized holes at the Fermi level for several values of the average magnetization of the Mn ystem. We show that, for a certain interval of Mn and hole densities, an increase on the magnetic order of the Mn ions come together with a change of the nature of the states at the Fermi level. This fact provides a delocalization of spin-polarized extended states anti-aligned to the average Mn magnetization, and a higher spin-polarization of the hole gas. These results are consistent with the occurrence of ferromagnetism with relatively high transition temperatures observed in some thin film samples and multilayered structures of this material.Comment: 3 page

    Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates

    Full text link
    We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, the minimum and maximum particle radii are also required. We find that the transition between any two adjacent regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape of the distribution function of the radii. We consider size dispersions up-to 20% of the average radius using a physically motivated truncated Gaussian-size distribution, and focus on the regime where adsorbing particles do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure. The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to the presence of the pattern, the coverage shows a non-monotonic dependence on the cell size. The pattern also affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii particularly at high polydispersity.Comment: 9 pages, 5 figure

    Magnetic ordering in GaAlAs:Mn double well structure

    Full text link
    The magnetic order in the diluted magnetic semiconductor barrier of double AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo simulations. A confinement adapted RKKY mechanism is implemented for indirect exchange between Mn ions mediated by holes. It is shown that, depending on the barrier width and the hole concentration a ferromagnetic or a spin-glass order can be established.Comment: 3 figure
    corecore