305 research outputs found

    Breakdown of topological protection due to non-magnetic edge disorder in two-dimensional materials in the Quantum Spin Hall phase

    Full text link
    We study the suppression of the conductance quantization in quantum spin Hall systems by a combined effect of electronic interactions and edge disorder, that is ubiquitous in exfoliated and CVD grown 2D materials. We show that the interplay between the electronic localized states due to edge defects and electron-electron interactions gives rise to local magnetic moments, that break time-reversal symmetry and the topological protection of the edge states in 2D topological systems. Our results suggest that edge disorder leads to small deviations of a perfect quantized conductance in short samples and to a strong conductance suppression in long ones. Our analysis is based on on the Kane-Mele model, an unrestricted Hubbard mean field Hamiltonian and on a self-consistent recursive Green's functions technique to calculate the transport quantities.Comment: 6 pages, 3 figure

    The role of the disorder range and electronic energy in the graphene nanoribbons perfect transmission

    Get PDF
    Numerical calculations based on the recursive Green's functions method in the tight-binding approximation are performed to calculate the dimensionless conductance gg in disordered graphene nanoribbons with Gaussian scatterers. The influence of the transition from short- to long-ranged disorder on gg is studied as well as its effects on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on the perfectly conducting channel. We propose and calculate a backscattering estimative in order to establish the connection between the perfectly conducting channel (with g=1g=1) and the amount of intervalley scattering.Comment: 7 pages, 9 figures. To be published on Phys. Rev.

    Extraction techniques and clean-up procedures for the determination of pahs in sediments of the Ceará coast

    Get PDF
    Extraction and clean-up are essential points in polycyclic aromatic hydrocarbon (PAHs) analysis in a solid matrix. This work compares extraction techniques and clean-up procedures for PAH analysis. PAH levels, their toxicological significance and source were also evaluated in the waters of the Cocó and Ceará rivers. The efficiency of PAH recovery was higher for the soxhlet and ultrasonic techniques. PAH recovery varied from 69.3 to 99.3%. Total PAH concentration (ΣHPA) varied from 720.73 to 2234.76 µg kg-1 (Cocó river) and 96.4 to 1859.21 µg kg-1 (Ceará river). The main PAH sources are pyrolytic processes and the levels were classified as medium so that adverse effects are possible

    Effects of disorder range and electronic energy on the perfect transmission in graphene nanoribbons

    Get PDF
    Numerical calculations based on the recursive Green\u27s function method in the tight-binding approximation are performed to calculate the dimensionless conductance g in disordered graphene nanoribbons with Gaussian scatterers. The influence of the transition from short-to long-ranged disorder on g is studied as well as its effects on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on the perfectly conducting channel. We propose and calculate a backscattering estimate in order to establish the connection between the perfectly conducting channel (with g = 1) and the amount of intervalley scattering
    corecore