24,042 research outputs found

    On the equivalence of Lambda(t) and gravitationally induced particle production cosmologies

    Get PDF
    The correspondence between cosmological models powered by a decaying vacuum energy density and gravitationally induced particle production is investigated. Although being physically different in the physics behind them we show that both classes of cosmologies under certain conditions can exhibit the same dynamic and thermodynamic behavior. Our method is applied to obtain three specific models that may be described either as Lambda(t)CDM or gravitationally induced particle creation cosmologies. In the point of view of particle production models, the later class of cosmologies can be interpreted as a kind of one-component unification of the dark sector. By using current type Ia supernovae data, recent estimates of the cosmic microwave background shift parameter and baryon acoustic oscillations measurements we also perform a statistical analysis to test the observational viability within the two equivalent classes of models and we obtain the best-fit of the free parameters. By adopting the Akaike information criterion we also determine the rank of the models considered here. Finally, the particle production cosmologies (and the associated decaying Lambda(t)-models) are modeled in the framework of field theory by a phenomenological scalar field model.Comment: 9 pages, 3 figures, new comments and 8 references added. Accepted for publication in Physics Letters

    Disorder effects at low temperatures in La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3} manganites

    Full text link
    With the aim of probing the effect of magnetic disorder in the low-temperature excitations of manganites, specific-heat measurements were performed in zero field, and in magnetic fields up to 9 T in polycrystalline samples of La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3}, with Y concentrations x=0, 0.10, and 0.15. Yttrium doping yielded the appearance of a cluster-glass state, giving rise to unusual low-temperature behavior of the specific-heat. The main feature observed in the results is a strong enhancement of the specific-heat linear term, which is interpreted as a direct consequence of magnetic disorder. The analysis was further corroborated by resistivity measurements in the same compounds.Comment: 9 pages, 2 figure

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    q-Deformed Kink Solutions

    Full text link
    The q-deformed kink of the λϕ4−\lambda\phi^4-model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. From such a bosonic zero-mode the q-deformed potential in 1+1 dimensions is found, and we show that the q-deformed kink solution is a kink displaced away from the origin.Comment: REvtex, 11 pages, 2 figures. Preprint CBPF-NF-005/03, site at http://www.cbpf.br. Revised version to appear in International Journal of Modern Physics

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14≤z≤0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc

    Formation of Dark Matter Haloes in a Homogeneous Dark Energy Universe

    Full text link
    Several independent cosmological tests have shown evidences that the energy density of the Universe is dominated by a dark energy component, which cause the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press-Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (Power Law) mass function (where we apply a nonextensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω=−0.58\omega=-0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω\omega parameter is very sensible to modifications in the PL free parameter, qq, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.Comment: 4 pages, 2 figures, Latex. Accepted for publication in the International Journal of Modern Physics D (IJMPD)

    On Useful Conformal Tranformations In General Relativity

    Full text link
    Local conformal transformations are known as a useful tool in various applications of the gravitational theory, especially in cosmology. We describe some new aspects of these transformations, in particular using them for derivation of Einstein equations for the cosmological and Schwarzschild metrics. Furthermore, the conformal transformation is applied for the dimensional reduction of the Gauss-Bonnet topological invariant in d=4d=4 to the spaces of lower dimensions.Comment: 17 pages, LaTeX. The paper is intended mainly for pedagogical purposes and represents a collection of exercises concerning local conformal transformations and dimensional reduction. To be published in "Gravitation and Cosmology

    Density-functionals not based on the electron gas: Local-density approximation for a Luttinger liquid

    Full text link
    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional {\it ab initio} LDA is based on a Fermi liquid (the electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.Comment: 4 pages, 4 figures (final version, contains additional applications and discussion; accepted by Phys. Rev. Lett.

    Effects of nanoscale spatial inhomogeneity in strongly correlated systems

    Full text link
    We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential viv_i can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction UiU_i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for reexamination of model calculations assuming spatial homogeneity.Comment: 5 pages, 1 table, 4 figures, to appear in PR
    • …
    corecore