24,042 research outputs found
On the equivalence of Lambda(t) and gravitationally induced particle production cosmologies
The correspondence between cosmological models powered by a decaying vacuum
energy density and gravitationally induced particle production is investigated.
Although being physically different in the physics behind them we show that
both classes of cosmologies under certain conditions can exhibit the same
dynamic and thermodynamic behavior. Our method is applied to obtain three
specific models that may be described either as Lambda(t)CDM or gravitationally
induced particle creation cosmologies. In the point of view of particle
production models, the later class of cosmologies can be interpreted as a kind
of one-component unification of the dark sector. By using current type Ia
supernovae data, recent estimates of the cosmic microwave background shift
parameter and baryon acoustic oscillations measurements we also perform a
statistical analysis to test the observational viability within the two
equivalent classes of models and we obtain the best-fit of the free parameters.
By adopting the Akaike information criterion we also determine the rank of the
models considered here. Finally, the particle production cosmologies (and the
associated decaying Lambda(t)-models) are modeled in the framework of field
theory by a phenomenological scalar field model.Comment: 9 pages, 3 figures, new comments and 8 references added. Accepted for
publication in Physics Letters
Disorder effects at low temperatures in La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3} manganites
With the aim of probing the effect of magnetic disorder in the
low-temperature excitations of manganites, specific-heat measurements were
performed in zero field, and in magnetic fields up to 9 T in polycrystalline
samples of La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3}, with Y concentrations x=0, 0.10, and
0.15. Yttrium doping yielded the appearance of a cluster-glass state, giving
rise to unusual low-temperature behavior of the specific-heat. The main feature
observed in the results is a strong enhancement of the specific-heat linear
term, which is interpreted as a direct consequence of magnetic disorder. The
analysis was further corroborated by resistivity measurements in the same
compounds.Comment: 9 pages, 2 figure
Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters
By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface
brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784
we access cosmic acceleration employing a kinematic description. Such result is
fully independent on the validity of any metric gravity theory, the possible
matter-energy contents filling the Universe, as well as on the SNe Ia Hubble
diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth
Marcel Grossmann Meeting on General Relativit
q-Deformed Kink Solutions
The q-deformed kink of the model is obtained via the
normalisable ground state eigenfunction of a fluctuation operator associated
with the q-deformed hyperbolic functions. From such a bosonic zero-mode the
q-deformed potential in 1+1 dimensions is found, and we show that the
q-deformed kink solution is a kink displaced away from the origin.Comment: REvtex, 11 pages, 2 figures. Preprint CBPF-NF-005/03, site at
http://www.cbpf.br. Revised version to appear in International Journal of
Modern Physics
Are Galaxy Clusters Suggesting an Accelerating Universe?
The present cosmic accelerating stage is discussed through a new kinematic
method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface
brightness data from galaxy clusters. By using the SZE/X-ray data from 38
galaxy clusters in the redshift range [Bonamente et
al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is
accelerating and that the transition from an earlier decelerating to a late
time accelerating regime is relatively recent. The ability of the ongoing
Planck satellite mission to obtain tighter constraints on the expansion history
through SZE/X-ray angular diameters is also discussed. Our results are fully
independent on the validity of any metric gravity theory, the possible matter-
energy contents filling the Universe, as well as on the SNe Ia Hubble diagram
from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings
of the Conferenc
Formation of Dark Matter Haloes in a Homogeneous Dark Energy Universe
Several independent cosmological tests have shown evidences that the energy
density of the Universe is dominated by a dark energy component, which cause
the present accelerated expansion. The large scale structure formation can be
used to probe dark energy models, and the mass function of dark matter haloes
is one of the best statistical tools to perform this study. We present here a
statistical analysis of mass functions of galaxies under a homogeneous dark
energy model, proposed in the work of Percival (2005), using an observational
flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our
analysis, the standard Press-Schechter (PS) approach (where a Gaussian
distribution is used to describe the primordial density fluctuation field of
the mass function), and the PL (Power Law) mass function (where we apply a
nonextensive q-statistical distribution to the primordial density field). We
conclude that the PS mass function cannot explain at the same time the X-ray
and the CMB data (even at 99% confidence level), and the PS best fit dark
energy equation of state parameter is , which is distant from the
cosmological constant case. The PL mass function provides better fits to the
HIFLUGCS X-ray galaxy data and the CMB data; we also note that the
parameter is very sensible to modifications in the PL free parameter, ,
suggesting that the PL mass function could be a powerful tool to constrain dark
energy models.Comment: 4 pages, 2 figures, Latex. Accepted for publication in the
International Journal of Modern Physics D (IJMPD)
On Useful Conformal Tranformations In General Relativity
Local conformal transformations are known as a useful tool in various
applications of the gravitational theory, especially in cosmology. We describe
some new aspects of these transformations, in particular using them for
derivation of Einstein equations for the cosmological and Schwarzschild
metrics. Furthermore, the conformal transformation is applied for the
dimensional reduction of the Gauss-Bonnet topological invariant in to the
spaces of lower dimensions.Comment: 17 pages, LaTeX. The paper is intended mainly for pedagogical
purposes and represents a collection of exercises concerning local conformal
transformations and dimensional reduction. To be published in "Gravitation
and Cosmology
Density-functionals not based on the electron gas: Local-density approximation for a Luttinger liquid
By shifting the reference system for the local-density approximation (LDA)
from the electron gas to other model systems one obtains a new class of density
functionals, which by design account for the correlations present in the chosen
reference system. This strategy is illustrated by constructing an explicit LDA
for the one-dimensional Hubbard model. While the traditional {\it ab initio}
LDA is based on a Fermi liquid (the electron gas), this one is based on a
Luttinger liquid. First applications to inhomogeneous Hubbard models, including
one containing a localized impurity, are reported.Comment: 4 pages, 4 figures (final version, contains additional applications
and discussion; accepted by Phys. Rev. Lett.
Effects of nanoscale spatial inhomogeneity in strongly correlated systems
We calculate ground-state energies and density distributions of Hubbard
superlattices characterized by periodic modulations of the on-site interaction
and the on-site potential. Both density-matrix renormalization group and
density-functional methods are employed and compared. We find that small
variations in the on-site potential can simulate, cancel, or even
overcompensate effects due to much larger variations in the on-site interaction
. Our findings highlight the importance of nanoscale spatial inhomogeneity
in strongly correlated systems, and call for reexamination of model
calculations assuming spatial homogeneity.Comment: 5 pages, 1 table, 4 figures, to appear in PR
- …