2,050 research outputs found

    Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis

    Get PDF
    AbstractIntroductionThis meta-analysis aimed to characterize the nature and magnitude of amyloid (Aβ)-related cognitive impairment and decline in cognitively normal (CN) older individuals.MethodMEDLINE Ovid was searched from 2012 to June 2016 for studies reporting relationships between cerebrospinal fluid or positron emission tomography (PET) Aβ levels and cognitive impairment (cross-sectional) and decline (longitudinal) in CN older adults. Neuropsychological data were classified into domains of episodic memory, executive function, working memory, processing speed, visuospatial function, semantic memory, and global cognition. Type of Aβ measure, how Aβ burden was analyzed, inclusion of control variables, and clinical criteria used to exclude participants, were considered as moderators. Random-effects models were used for analyses with effect sizes expressed as Cohen's d.ResultsA total of 38 studies met inclusion criteria contributing 30 cross-sectional (N = 5005) and 14 longitudinal (N = 2584) samples. Aβ-related cognitive impairment was observed for global cognition (d = 0.32), visuospatial function (d = 0.25), processing speed (d = 0.18), episodic memory, and executive function (both d's = 0.15), with decline observed for global cognition (d = 0.30), semantic memory (d = 0.28), visuospatial function (d = 0.25), and episodic memory (d = 0.24). Aβ-related impairment was moderated by age, amyloid measure, type of analysis, and inclusion of control variables and decline moderated by amyloid measure, type of analysis, inclusion of control variables, and exclusion criteria used.DiscussionCN older adults with high Aβ show a small general cognitive impairment and small to moderate decline in episodic memory, visuospatial function, semantic memory, and global cognition

    Constraining the HI-Halo Mass Relation From Galaxy Clustering

    Full text link
    We study the dependence of galaxy clustering on atomic gas mass using a sample of \sim16,000 galaxies with redshift in the range of 0.0025<z<0.050.0025<z<0.05 and HI mass of MHI>108MM_{\rm HI}>10^8M_{\odot}, drawn from the 70% complete sample of the Arecibo Legacy Fast ALFA survey. We construct subsamples of galaxies with MHIM_{\rm HI} above different thresholds, and make volume-limited clustering measurements in terms of three statistics: the projected two-point correlation function, the projected cross-correlation function with respect to a reference sample selected from the Sloan Digital Sky Survey, and the redshift-space monopole moment. In contrast to previous studies, which found no/weak HI-mass dependence, we find both the clustering amplitude on scales above a few Mpc and the bias factors to increase significantly with increasing HI mass for subsamples with HI mass thresholds above 109M10^9M_{\odot}. For HI mass thresholds below 109M10^9M_{\odot}, while the measurements have large uncertainties caused by the limited survey volume and sample size, the inferred galaxy bias factors are systematically lower than the minimum halo bias factor from mass-selected halo samples. The simple halo model, in which galaxy content is only determined by halo mass, has difficulties in interpreting the clustering measurements of the HI-selected samples. We extend the simple model by including the halo formation time as an additional parameter. A model that puts HI-rich galaxies into halos that formed late can reproduce the clustering measurements reasonably well. We present the implications of our best-fitting model on the correlation of HI mass with halo mass and formation time, as well as the halo occupation distributions and HI mass functions for central and satellite galaxies. These results are compared with the predictions from semi-analytic galaxy formation models and hydrodynamic galaxy formation simulations.Comment: Accepted for publication in ApJ. The 2PCF measurements are available at http://sdss4.shao.ac.cn/guoh

    Africa as an evolutionary arena for large fruits

    Get PDF
    Strong paleoclimatic change and few Late Quaternary megafauna extinctions make mainland Africa unique among continents. Here, we hypothesize that, compared with elsewhere, these conditions created the ecological opportunity for the macroevolution and geographic distribution of large fruits. We assembled global phylogenetic, distribution and fruit size data for palms (Arecaceae), a pantropical, vertebrate-dispersed family with &gt; 2600 species, and integrated these with data on extinction-driven body size reduction in mammalian frugivore assemblages since the Late Quaternary. We applied evolutionary trait, linear and null models to identify the selective pressures that have shaped fruit sizes. We show that African palm lineages have evolved towards larger fruit sizes and exhibited faster trait evolutionary rates than lineages elsewhere. Furthermore, the global distribution of the largest palm fruits across species assemblages was explained by occurrence in Africa, especially under low canopies, and extant megafauna, but not by mammalian downsizing. These patterns strongly deviated from expectations under a null model of stochastic (Brownian motion) evolution. Our results suggest that Africa provided a distinct evolutionary arena for palm fruit size evolution. We argue that megafaunal abundance and the expansion of savanna habitat since the Miocene provided selective advantages for the persistence of African plants with large fruits.</p

    Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To

    Get PDF
    The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells

    Interferometric 12CO(J=2-1) image of the Nuclear Region of Seyfert 1 Galaxy NGC 1097

    Full text link
    We have mapped the central region of the Seyfert 1 galaxy NGC 1097 in 12CO(J=2-1) with the Submillieter Array (SMA). The 12CO(J=2-1) map shows a central concentration and a surrounding ring, which coincide respectively with the Seyfert nucleus and a starburst ring. The line intensity peaks at the nucleus, whereas in a previously published 12CO(J=1-0) map the intensity peaks at the starburst ring. The molecular ring has an azimuthally averaged 12CO(J=2-1)/(J=1-0) intensity ratio (R21) of about unity, which is similar to those in nearby active star forming galaxies, suggesting that most of the molecular mass in the ring is involved in fueling the starburst. The molecular gas can last for only about 1.2\times10^8 years without further replenishment assuming a constant star formation rate and a perfect conversion of gas to stars. The velocity map shows that the central molecular gas is rotating with the molecular ring in the same direction, while its velocity gradient is much steeper than that of the ring. This velocity gradient of the central gas is similar to what is usually observed in some Seyfert 2 galaxies. To view the active nucleus directly in the optical, the central molecular gas structure can either be a low-inclined disk or torus but not too low to be less massive than the mass of the host galaxy itself, be a highly-inclined thin disk or clumpy and thick torus, or be an inner part of the galactic disk. The R21 value of ~1.9 of the central molecular gas component, which is significantly higher than the value found at the molecular gas ring, indicates that the activity of the Seyfert nucleus may have a significant influence on the conditions of the molecular gas in the central component.Comment: 22 pages, 4 figures, accepted by Ap

    Nanoscale cuticle density variations correlate with pigmentation and color in butterfly wing scales

    Full text link
    How pigment distribution correlates with cuticle density within a microscopic butterfly wing scale, and how both impact final reflected color remains unknown. We used ptychographic X-ray computed tomography to quantitatively determine, at nanoscale resolutions, the three-dimensional mass density of scales with pigmentation differences. By comparing cuticle densities with pigmentation and color within a scale, we determine that the lower lamina structure in all scales has the highest density and lowest pigmentation. Low pigment levels also correlate with sheet-like chitin structures as opposed to rod-like structures, and distinct density layers within the lower lamina help explain reflected color. We propose that pigments, in addition to absorbing specific wavelengths, can affect cuticle polymerization, density, and refractive index, thereby impacting reflected wavelengths that produce structural colors
    corecore