6 research outputs found

    Follow-up plasma apolipoprotein E levels in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) cohort

    Get PDF
    Introduction: Alzheimer's disease (AD) is a growing socioeconomic problem worldwide. Early diagnosis and prevention of this devastating disease have become a research priority. Consequently, the identification of clinically significant and sensitive blood biomarkers for its early detection is very important. Apolipoprotein E (APOE) is a well-known and established genetic risk factor for late-onset AD; however, the impact of the protein level on AD risk is unclear. We assessed the utility of plasma ApoE protein as a potential biomarker of AD in the large, well-characterised Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) cohort. Methods: Total plasma ApoE levels were measured at 18-month follow-up using a commercial bead-based enzyme-linked immunosorbent assay: the Luminex xMAP human apolipoprotein kit. ApoE levels were then analysed between clinical classifications (healthy controls, mild cognitive impairment (MCI) and AD) and correlated with the data available from the AIBL cohort, including but not limited to APOE genotype and cerebral amyloid burden. Results: A significant decrease in ApoE levels was found in the AD group compared with the healthy controls. These results validate previously published ApoE protein levels at baseline obtained using different methodology. ApoE protein levels were also significantly affected, depending on APOE genotypes, with ε2/ε2 having the highest protein levels and ε4/ε4 having the lowest. Plasma ApoE levels were significantly negatively correlated with cerebral amyloid burden as measured by neuroimaging. Conclusions: ApoE is decreased in individuals with AD compared with healthy controls at 18-month follow-up, and this trend is consistent with our results published at baseline. The influence of APOE genotype and sex on the protein levels are also explored. It is clear that ApoE is a strong player in the aetiology of this disease at both the protein and genetic levels

    Sodium butyrate reduces brain Amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage

    No full text
    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and neuropathological features, including abnormal deposition of amyloid-β (Aβ) peptides, intracellular neurofibrillary tangles, and neuronal death. Identifying therapeutics which can reduce memory deficits at an early stage of the disease has the advantage of slowing or even reversing disease progression before irreversible brain damage has occurred. Consequently, in this study, we investigated the ability of the histone deacetylase inhibitor sodium butyrate (NaB) to attenuate memory deficits in the 5xFAD mouse model of AD following a 12-week feeding regimen. 5xFAD mice demonstrate a unique time course of Aβ pathology, developing Aβ plaques as early as 2 months. Male mice were assigned to either a control diet or a NaB-supplemented diet which was administered at either 5 mg/kg/day, or 15 mg/kg/day for 12 weeks (each group, N = 15). Supplementation commenced at an early disease stage (8–10 weeks of age). Behavioral testing (contextual and cued fear conditioning) was undertaken, and brain Aβ levels measured, at the end of the 12-week intervention. NaB had profound effects on Aβ levels and on associative learning and cognitive functioning. A 40% reduction in brain Aβ levels and a 25% increase in fear response in both the cued and contextual testing was observed in the NaB-treated animals compared to the control group. These findings suggest that NaB warrants further investigation as a potential therapeutic agent in the treatment of cognitive deficits associated with early stages of AD

    Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults

    Get PDF
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently has no cure. Identifying biochemical changes associated with neurodegeneration prior to symptom onset, will provide insight into the biological mechanisms associated with neurodegenerative processes, that may also aid in identifying potential drug targets. The current study therefore investigated associations between plasma neurofilament light chain (NF‐L), a marker of neurodegeneration, with plasma metabolites that are products of various cellular processes. Plasma NF‐L, measured by ultrasensitive Single molecule array (Simoa) technology (Quanterix) and plasma metabolites, measured by mass‐spectrometry (AbsoluteIDQ® p400HR kit, BIOCRATES), were assessed in the Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohort comprising 100 cognitively normal older adults. Metabolites belonging to biogenic amine (creatinine, symmetric dimethylarginine, asymmetric dimethylarginine; ADMA, kynurenine, trans‐4‐hydroxyproline), amino acid (citrulline, proline, arginine, asparagine, phenylalanine, threonine) and acylcarnitine classes were observed to have positive correlations with plasma NF‐L, suggesting a link between neurodegeneration and biological pathways associated with neurotransmitter regulation, nitric oxide homoeostasis, inflammation and mitochondrial function. Additionally, after stratifying participants based on low/high brain amyloid‐β load (Aβ ±) assessed by positron emission tomography, while creatinine, SDMA and citrulline correlated with NF‐L in both Aβ‐ and Aβ+ groups, ADMA, proline, arginine, asparagine, phenylalanine and acylcarnitine species correlated with NF‐L only in the Aβ+ group after adjusting for confounding variables, suggesting that the association of these metabolites with neurodegeneration may be relevant to AD‐related neuropathology. Metabolites identified to be associated with plasma NF‐L may have the potential to serve as prognostic markers for neurodegenerative diseases, however, further studies are required to validate the current findings in an independent cohort, both cross‐sectionally and longitudinally

    Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease.

    No full text
    We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases
    corecore