1,052 research outputs found
Recommended from our members
An analysis and performance guide of Luciano Berio's Sequenza IX
Berio’s Sequenza IX is one of the most well-known and influential compositions in the contemporary repertoire for clarinetists. Indeed, many prominent competitions require clarinetists to play it. For example, Berio’s Sequenza IX appeared as a second-round repertoire selection in the 2019 Nielsen Competition. Although I had avoided contemporary music (like most of performers) because of its difficulty, I became fascinated by Berio’s Sequenza IX when I had to listen and study the piece in preparation for the Nielsen Competition. During my study of the piece, the history of the Sequenza series – the fact that Berio wrote Sequenza IX as part of a series for all kinds of instruments – and the difference between Berio’s music and the repertoire that I typically played piqued my interest.
This treatise provides an analysis of and performance guide for Luciano Berio’s Sequenza IX (1980). I first outline the compositional history of the work. I then contextualize the piece in relation to Berio’s electronic music and experience at IRCAM; in particular, I explore how the relationships between the electronic and clarinet parts in Chemins V were transferred to Sequenza IX. I analyze the pitch content, phrase structure, and form of the piece. And, lastly, based on my analysis, I provide a performance guide to help performers play Berio’s Sequenza IX. Numerous factors – its complex harmonic language, fragmented melodies, unclear phrasing, un-notated meter, and extended techniques – make Sequenza IX one of the most difficult modern works for solo clarinet. My research will help performers understand the details and structure of the piece so that they can have more direction and efficiency in their practice of the piece.Musi
Effects of a Four-Week Core Stability Exercise on Functional Movement and Balance in People with Mild Lower-limb Discomfort
This study aimed to investigate the effects of a short-term core stability exercise on functional movement and balance in people with mild lower-limb discomfort. Twenty people with mild lower-limb discomfort were randomly assigned to control (CG) and core stability exercise training groups (SG, n=10 each). The SG completed twenty 30-min training sessions consisting of Pilates exercises for four weeks. Functional movement, balance, and discomfort level were assessed before and after core stability exercise, using a functional movement test, balance test and visual analogue scale (VAS), respectively. A mixed ANOVA with repeated measures was performed to determine the differences. SG demonstrated a significant increase in hurdle step (p = 0.024, group × time effect) and shoulder mobility (p = 0.037, group × time effect). The dynamic balance scores were significantly increased from the baseline in both limbs (right, p = 0.007; left, p = 0.011, time effect). Post-hoc pairwise comparisons indicated these increases were significant only in SG. Additionally, ankle pain was significantly reduced in SG (p = 0.023, group × time effect). This study highlights that four weeks of core stability exercise can positively affect the lower limbs’ functional movement and balance in people with mild lower-limb discomfort
In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation
This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO₂ and WO₃ (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O₂, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O₂ removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO₂•/O₂•– pair in the dark. The WO₃ fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight
Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function
In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation
This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO₂ and WO₃ (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O₂, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O₂ removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO₂•/O₂•– pair in the dark. The WO₃ fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight
Association between sleep duration and metabolic syndrome: a cross-sectional study
Background
Both short and long sleep duration have been consistently studied as a risk factor for obesity, hyperglycemia and hypertension. In this cross-sectional study, we provide an updated analysis of the Health Examinees (HEXA) study on the association between sleep duration and metabolic syndrome (MetS) occurrence among Koreans age 40–69 year olds.
Methods
A total of 133,608 subjects (44,930 men, 88,678 women) were enrolled in the HEXA study 2004–2013. Sleep duration was categorized into 4 sleep categories (< 6 h, 6 to < 8 h, 8 to < 10 h, ≥10 h). MetS criterion was based on the National Cholesterol Education Program, Adult Treatment Panel III. Logistic regression was used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs).
Results
Compared with individuals sleeping 6 to < 8 h per day, less than 6 h of sleep was associated with MetS (multivariable adjusted OR: 1.12, 95% CI: 1.05–1.19) and elevated waist circumference (1.15, 1.08–1.23) among men; with elevated waist circumference (1.09, 1.04–1.14) among women. Greater than 10 h of sleep was associated with MetS (1.28, 1.08–1.50) and elevated triglycerides (1.33, 1.14–1.56) among men; with MetS (1.40, 1.24–1.58), elevated waist circumference (1.14, 1.02–1.27), elevated triglycerides (1.41, 1.25–1.58), reduced high-density lipoprotein cholesterol (HDL-C) (1.24, 1.12–1.38), and elevated fasting glucose (1.39, 1.23–1.57) among women.
Conclusions
Less than 6 h of sleep is associated with elevated waist circumference among both men and women and with MetS among men only. Greater than 10 h of sleep is associated with MetS and elevated triglycerides among both men and women and with elevated waist circumference, reduced HDL-C, and elevated fasting glucose among women only.This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention [grant number 2004-E71004–00; 2005-E71011–00; 2005-E71009–00; 2006-E71001–00; 2006-E71004–00; 2006-E71010–00; 2006- E71003–00; 2007-E71004–00; 2007-E71006–00; 2008-E71006–00; 2008-E71008–00; 2009-E71009–00; 2010-E71006–00; 2011-E71006–00; 2012-E71001–00; 2013-E71009–00]. This funding source had roles in study design and data collection
Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer???s disease
The absence of effective therapeutics against Alzheimer???s disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-?? (A??), metal-A??, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets??? reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.ope
- …