1,052 research outputs found

    Effects of a Four-Week Core Stability Exercise on Functional Movement and Balance in People with Mild Lower-limb Discomfort

    Get PDF
    This study aimed to investigate the effects of a short-term core stability exercise on functional movement and balance in people with mild lower-limb discomfort. Twenty people with mild lower-limb discomfort were randomly assigned to control (CG) and core stability exercise training groups (SG, n=10 each). The SG completed twenty 30-min training sessions consisting of Pilates exercises for four weeks. Functional movement, balance, and discomfort level were assessed before and after core stability exercise, using a functional movement test, balance test and visual analogue scale (VAS), respectively. A mixed ANOVA with repeated measures was performed to determine the differences. SG demonstrated a significant increase in hurdle step (p = 0.024, group × time effect) and shoulder mobility (p = 0.037, group × time effect). The dynamic balance scores were significantly increased from the baseline in both limbs (right, p = 0.007; left, p = 0.011, time effect). Post-hoc pairwise comparisons indicated these increases were significant only in SG. Additionally, ankle pain was significantly reduced in SG (p = 0.023, group × time effect). This study highlights that four weeks of core stability exercise can positively affect the lower limbs’ functional movement and balance in people with mild lower-limb discomfort

    In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation

    Get PDF
    This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO₂ and WO₃ (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O₂, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O₂ removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO₂•/O₂•– pair in the dark. The WO₃ fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight

    Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture

    Get PDF
    Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function

    In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation

    Get PDF
    This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO₂ and WO₃ (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O₂, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O₂ removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO₂•/O₂•– pair in the dark. The WO₃ fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight

    Association between sleep duration and metabolic syndrome: a cross-sectional study

    Get PDF
    Background Both short and long sleep duration have been consistently studied as a risk factor for obesity, hyperglycemia and hypertension. In this cross-sectional study, we provide an updated analysis of the Health Examinees (HEXA) study on the association between sleep duration and metabolic syndrome (MetS) occurrence among Koreans age 40–69 year olds. Methods A total of 133,608 subjects (44,930 men, 88,678 women) were enrolled in the HEXA study 2004–2013. Sleep duration was categorized into 4 sleep categories (< 6 h, 6 to < 8 h, 8 to < 10 h, ≥10 h). MetS criterion was based on the National Cholesterol Education Program, Adult Treatment Panel III. Logistic regression was used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Results Compared with individuals sleeping 6 to < 8 h per day, less than 6 h of sleep was associated with MetS (multivariable adjusted OR: 1.12, 95% CI: 1.05–1.19) and elevated waist circumference (1.15, 1.08–1.23) among men; with elevated waist circumference (1.09, 1.04–1.14) among women. Greater than 10 h of sleep was associated with MetS (1.28, 1.08–1.50) and elevated triglycerides (1.33, 1.14–1.56) among men; with MetS (1.40, 1.24–1.58), elevated waist circumference (1.14, 1.02–1.27), elevated triglycerides (1.41, 1.25–1.58), reduced high-density lipoprotein cholesterol (HDL-C) (1.24, 1.12–1.38), and elevated fasting glucose (1.39, 1.23–1.57) among women. Conclusions Less than 6 h of sleep is associated with elevated waist circumference among both men and women and with MetS among men only. Greater than 10 h of sleep is associated with MetS and elevated triglycerides among both men and women and with elevated waist circumference, reduced HDL-C, and elevated fasting glucose among women only.This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention [grant number 2004-E71004–00; 2005-E71011–00; 2005-E71009–00; 2006-E71001–00; 2006-E71004–00; 2006-E71010–00; 2006- E71003–00; 2007-E71004–00; 2007-E71006–00; 2008-E71006–00; 2008-E71008–00; 2009-E71009–00; 2010-E71006–00; 2011-E71006–00; 2012-E71001–00; 2013-E71009–00]. This funding source had roles in study design and data collection

    Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer???s disease

    Get PDF
    The absence of effective therapeutics against Alzheimer???s disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-?? (A??), metal-A??, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets??? reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.ope
    corecore