3,290 research outputs found

    Particle swarm optimization algorithms with selective differential evolution for AUV path planning

    Get PDF
    Particle swarm optimization (PSO)-based algorithms are suitable for path planning of the Autonomous Underwater Vehicle (AUV) due to their high computational efficiency. However, such algorithms may produce sub-optimal paths or require higher computational load to produce an optimal path. This paper proposed a new approach that improves the ability of PSO-based algorithms to search for the optimal path while maintaining a low computational requirement. By hybridizing with differential evolution (DE), the proposed algorithms carry out the DE operator selectively to improve the search ability. The algorithms were applied in an offline AUV path planner to generate a near-optimal path that safely guides the AUV through an environment with a priori known obstacles and time-invariant non-uniform currents. The algorithm performances were benchmarked against other algorithms in an offline path planner because if the proposed algorithms can provide better computational efficiency to demonstrate the minimum capability of a path planner, then they will outperform the tested algorithms in a realistic scenario. Through Monte Carlo simulations and Kruskal-Wallis test, SDEAPSO (selective DE-hybridized PSO with adaptive factor) and SDEQPSO (selective DE-hybridized Quantum-behaved PSO) were found to be capable of generating feasible AUV path with higher efficiency than other algorithms tested, as indicated by their lower computational requirement and excellent path quality

    Physiological Functions of the COPI Complex in Higher Plants

    Get PDF
    COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAI of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The beta'-, gamma-, and delta-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of beta'-, gamma-, and delta-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of beta'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.1196Ysciescopu

    Sphingosine mediates FTY720-induced apoptosis in LLC-PK1 cells

    Get PDF
    FTY720, a synthetic sphingoid base analog, was examined as a new sphingosine kinase inhibitor, which converts endogenous sphingosine into its phosphate form. With 20 ??M of FTY720, sphingosine accumulated in the LLC-PK1 cells in a time- and dose-dependent manner. The FTY720 treated cells showed a high concentration of fragmented DNA, a high caspase-3 like activity and TUNEL staining cells. It was also found that the sphingosine and sphinganine level increased in a time- and dose-dependent manner within 12 h after the FTY720 treatment. The sphingosine kinase activity was reduced by FTY720 as much as other sphingosine kinase inhibitors, N, N-dimethylsphingosine (DMS), dl-threo-dihydrosphingosine (DHS). The fragmented DNA content as a result of the 20 ??M of FTY720 treatment and by 5 ??M of the exogenously added BSA-sphingosine complex indicated typical apoptosis. Under similar conditions, the accumulated sphingosine concentration in all the cells was almost identical even though the sphingosine distribution inside the cells was somewhat different. These results indicate that the FTY720 induced apoptosis is associated with the inhibition of the sphingosine kinase activity and is strongly associated with the successive accumulation of sphingosine.open172

    Growth characteristics and productivity of tall fescue new variety ‘Purumi’ in South Korea

    Get PDF
    A new tall fescue variety (Festuca arundinacea Schreb.) named ‘Purumi’ was developed by the National Institute of Animal Science, Rural Development Administration, South Korea from 1999 to 2007. For synthetic seed  production of this new variety, 5 superior clones: EFa9108, EFa0010, EFa0020, EFa0108 and EFa0202 were selected and polycrossed. The agronomic growth characteristics and forage production capability of the seeds were studied at Cheonan from 2004 to 2005, and regional trials were conducted in Cheonan, Pyungchang, Jeju and Jinju from 2008 to 2010. Purumi showed enhanced winter hardiness, disease resistance, and regrowth ability as compared to Fawn. The dry matter yield of Purumi was about 5.6% (16.821 kg/ha) higher than that of Fawn. However, the  nutritive value of both varieties was similar. Since this new variety of tall fescue, Purumi has been developed and distributed with its most  remarkable adaptability for Korean climates and superior value as a livestock feed, it is expected to play an important role in restoration of the pasture industry in Korea.Key words: Tall fescue, Purumi, variety, forage, grassland

    Crystal Structure of the Rad3/XPD regulatory domain of Ssl1/p44

    Get PDF
    The Ssl1/p44 subunit is a core component of the yeast/mammalian general transcription factor TFIIH, which is involved in transcription and DNA repair. Ssl1/p44 binds to and stimulates the Rad3/XPD helicase activity of TFIIH. To understand the helicase stimulatory mechanism of Ssl1/p44, we determined the crystal structure of the N-terminal regulatory domain of Ssl1 from Saccharomyces cerevisiae. Ssl1 forms a von Willebrand factor A fold in which a central six-stranded beta-sheet is sandwiched between three alpha helices on both sides. Structural and biochemical analyses of Ssl1/p44 revealed that the beta 4-alpha 5 loop, which is frequently found at the interface between von Willebrand factor A family proteins and cellular counterparts, is critical for the stimulation of Rad3/XPD. Yeast genetics analyses showed that double mutation of Leu-239 and Ser-240 in the beta 4-alpha 5 loop of Ssl1 leads to lethality of a yeast strain, demonstrating the importance of the Rad3-Ssl1 interactions to cell viability. Here, we provide a structural model for the Rad3/XPD-Ssl1/p44 complex and insights into how the binding of Ssl1/p44 contributes to the helicase activity of Rad3/XPD and cell viability.X1165Ysciescopu
    corecore