11 research outputs found

    Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Get PDF
    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining

    A historical overview of the Pavilion Lake Research Project-Analog science and exploration in an underwater environment

    No full text
    As humans venture back to the Moon, or onward to near-Earth objects and Mars, it is expected that the rigors of this exploration will far exceed those of Apollo. Terrestrial analogs can play a key role in our preparations for these complex voyages, since in addition to their scientifi c value, analogs afford the exploration community a means to safely prepare and test exploration strategies for future robotic and human planetary missions. Many relevant analog studies exist, and each is focused on a particular aspect of strategic development. Some analog programs such as the Pavilion Lake Research Project (PLRP) present the opportunity to investigate both real scientifi c and real exploration scenarios in tandem. The activities of this research program demand the use of techniques, tools, and strategies for underwater scientifi c exploration, and the challenges associated with the scientifi c exploration of Pavilion Lake are analogous to those human explorers will encounter on other planetary and small solar system bodies. The goal of this paper is to provide a historical synopsis of the PLRP's objectives, milestones, and contributions to both the scientifi c and exploration community. Here, we focus on detailing the development and deployment of an integrated science and exploration program with analog application to our understanding of early Earth systems and the preparation for future human space exploration. Over a decade of exploration and discovery is chronicled herein. © 2011 The Geological Society of America.link_to_subscribed_fulltex
    corecore