32 research outputs found

    PO-203 Across generations maternal exercise in hypoxic environment on mitochondrial biosynthetic factors in rat skeletal muscle

    Get PDF
    Objective Environmental and maternal exercise experienced even during the very earliest stages of life has the potential to cause developmental changes.The growing evidence demonstrated that diverse environmental stressors affect offspring in variousaspects in early stage of lifeand can be transmitted directly or indirectly by both parental lines.The purpose of the present study was to investigate the effect of across generations maternal exercise training under the hypoxic environment on mitochondrial biogenesis and angiogenesis related protein expressions of skeletal muscle in offspring ofmultiple generations. Methods The experimental groups were divided into four groups as NCON (control in normoxia), NEXE (exercise in normoxia), HCON (control under hypoxia), HEXE (exercise under hypoxia), and studied for three generations. Exercise groups were run on animal treadmill at 60%-75% VO2maxfor one hour per day, five times per week for 10 weeks (seven weeks before conception and during conception for three weeks). Animals were sacrificed at a given time table and assayed mitochondrial biogenesis and angiogenesis related protein expressions using western blotting. Results The major findings from the present study were firstly, maternal exercise training before and during conception under hypoxic environment increase in mitochondrial biogenesis and angiogenesis related proteins expressions in both maternal and offspring skeletal muscles, secondly, long term of exposure to hypoxic environment without exercise training increase in mitochondrial biogenesis and angiogenesis related proteins expressions in offspring skeletal muscles, and further increased when exercise training performed at hypoxic environment, lastly, there was no cumulative benefit by consecutively exposure for three generations under hypoxic environment, which is indicating world winning runners from high altitude dwellers may not relay on the duration of sojourn under hypoxic environment, but rather selection and training related factors. Conclusions In summary, maternal exercise training before and during conception under hypoxic environment increase in mitochondrial biogenesis(PGC-1α, COX-Ⅳ, NRF-1, mtTFA) and angiogenesis(HIF-1α, VEGFtotal) related proteins expressions in both maternal and offspring skeletal muscles, especially exercise training stimulated the protein expressions under hypoxic environment than normoxic condition. Therefore, exercise capacity may be endowed by both hypoxic environment and exercise training at hypoxic environment. &nbsp

    Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women

    Get PDF
    Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women

    Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans

    Get PDF
    Skeletal muscle plays a pivotal role in the maintenance of physical and metabolic health and, critically, mobility. Accordingly, strategies focused on increasing the quality and quantity of skeletal muscle are relevant, and resistance exercise is foundational to the process of functional hypertrophy. Much of our current understanding of skeletal muscle hypertrophy can be attributed to the development and utilization of stable isotopically labeled tracers. We know that resistance exercise and sufficient protein intake act synergistically and provide the most effective stimuli to enhance skeletal muscle mass; however, the molecular intricacies that underpin the tremendous response variability to resistance exercise-induced hypertrophy are complex. The purpose of this review is to discuss recent studies with the aim of shedding light on key regulatory mechanisms that dictate hypertrophic gains in skeletal muscle mass. We also aim to provide a brief up-to-date summary of the recent advances in our understanding of skeletal muscle hypertrophy in response to resistance training in humans

    Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: insights from stable isotope studies

    Get PDF
    Skeletal muscle is the largest organ of the human body and plays a pivotal role in whole-body homeostasis through the maintenance of physical and metabolic health. Establishing strategies aimed at increasing the amount, and minimising loss, of muscle mass are of upmost importance. Muscle mass is primarily dictated by the meal-to-meal fluctuations in muscle protein synthesis (MPS) and muscle protein breakdown (MPB), each of which can be quantified through the use of stable isotopically labelled tracers. Importantly, both MPS and MPB can be influenced by external factors such as nutritional manipulation, specifically protein ingestion, and changes in loading via exercise. To date, research involving stable isotopic tracers has focused on determining the optimal dose, timing surrounding bouts of exercise, distribution and composition of protein to maximally stimulate MPS and inhibit MPB, both at rest and following exercise. In this review we focus on the use of these stable isotopically-labeled tracers to unravel the intricacies of skeletal muscle protein turnover in response to specific nutritional interventions

    Thirty-day mortality after percutaneous gastrostomy by endoscopic versus radiologic placement: a systematic review and meta-analysis

    Get PDF
    Background/AimsA percutaneous gastrostomy can be placed either endoscopically (percutaneous endoscopic gastrostomy, PEG) or radiologically (radiologically-inserted gastrostomy, RIG). However, there is no consistent evidence of the safety and efficacy of PEG compared to RIG. Recently, 30-day mortality has become considered as the most important surrogate index for evaluating the safety and efficacy of percutaneous gastrostomy. The aim of this meta-analysis was to compare the 30-day mortality rates between PEG and RIG.MethodsMajor electronic databases (MEDLINE, Embase, Scopus, and Cochrane library) were queried for comparative studies on the two insertion techniques of gastrostomy among adults with swallowing disturbance. The primary outcome was the 30-day mortality rate after gastrostomy insertion. Forest and funnel plots were generated for outcomes using STATA version 14.0.ResultsFifteen studies (n=2,183) met the inclusion criteria. PEG was associated with a lower risk of 30-day mortality after tube placement compared with RIG (odds ratio, 0.60; 95% confidence interval [CI], 0.38–0.94; P=0.026). The pooled prevalence of 30-day mortality of PEG was 5.5% (95% CI, 4.0%–6.9%) and that of RIG was 10.5% (95% CI, 6.8%–14.3%). No publication bias was noted.ConclusionsThe present meta-analysis demonstrated that PEG is associated with a lower probability of 30-day mortality compared to RIG, suggesting that PEG should be considered as the first choice for long-term enteral tube feeding. Further prospective randomized studies are needed to evaluate and compare the safety of these two different methods of gastrostomy

    Increased protein intake derived from leucine-enriched protein enhances the integrated myofibrillar protein synthetic response to short-term resistance training in untrained men and women: a 4-day randomized controlled trial

    Get PDF
    Leucine is a critical amino acid stimulating myofibrillar protein synthesis (MyoPS). The consumption of higher leucine-containing drinks stimulates MyoPS, but we know less about higher leucine solid foods. Here we examined the effect of short-term resistance exercise training (STRT) combined with supplementation of a protein and leucine-enriched bar, compared with STRT alone, on integrated (%/d) rates of MyoPS and anabolic protein signaling. In a non-blinded, randomized crossover trial, eight young adults performed four sessions of STRT without or while consuming the study bar (STRT+Leu, 16g of protein containing ∼3g of leucine) for two 4d phases, separated by 2d non-exercise (Rest) washout. In combination with serial muscle biopsies, deuterated water permitted the measurement of myofibrillar protein synthesis and protein signaling phosphorylation. MyoPS during STRT (1.43 ± 0.06 %/d) and STRT+Leu (1.53 ± 0.06 %/d) were greater than Rest (1.31 ± 0.05 %/d), and MyoPS during STRT+Leu (1.53 ± 0.06 %/d) was greater than STRT alone (1.43 ± 0.06 %/d). STRT+Leu increased the ratio of phosphorylated to total mTOR and 4EBP1 compared to Rest. Engaging in STRT increased integrated MyoPS and protein signaling in young adults and was enhanced with increased protein intake derived from a leucine-enriched protein bar. This study was registered at clinicaltrials.gov as NCT03796897

    ??????????????? ???????????? ????????? ?????? ??????

    No full text
    corecore