150 research outputs found

    Rise and shine: The use of polychromatic short-wavelength-enriched light to mitigate sleep inertia at night following awakening from slow-wave sleep

    Get PDF
    Sleep inertia is the brief period of performance impairment and reduced alertness experienced after waking, especially from slow-wave sleep. We assessed the efficacy of polychromatic short-wavelength-enriched light to improve vigilant attention, alertness and mood immediately after waking from slow-wave sleep at night. Twelve participants (six female, 23.3 ± 4.2 years) maintained an actigraphy-confirmed sleep schedule of 8.5 hr for 5 nights, and 5 hr for 1 night prior to an overnight laboratory visit. In the laboratory, participants were awakened from slow-wave sleep, and immediately exposed to either dim, red ambient light (control) or polychromatic short-wavelength-enriched light (light) for 1 hr in a randomized crossover design. They completed a 5-min Psychomotor Vigilance Task, the Karolinska Sleepiness Scale, and Visual Analogue Scales of mood at 2, 17, 32 and 47 min after waking. Following this testing period, lights were turned off and participants returned to sleep. They were awakened from their subsequent slow-wave sleep period and received the opposite condition. Compared with the control condition, participants exposed to light had fewer Psychomotor Vigilance Task lapses (χ2[1] = 5.285, p = 0.022), reported feeling more alert (Karolinska Sleepiness Scale: F1,77 = 4.955, p = 0.029; Visual Analogue Scalealert: F1,77 = 8.226, p = 0.005), and reported improved mood (Visual Analogue Scalecheerful: F1,77 = 8.615, p = 0.004). There was no significant difference in sleep-onset latency between conditions following the testing period (t10 = 1.024, p = 0.330). Our results suggest that exposure to polychromatic short-wavelength-enriched light immediately after waking from slow-wave sleep at night may help improve vigilant attention, subjective alertness, and mood. Future studies should explore the potential mechanisms of this countermeasure and its efficacy in real-world environments

    Supervision of a self-driving vehicle unmasks latent sleepiness relative to manually controlled driving

    Get PDF
    Human error has been implicated as a causal factor in a large proportion of road accidents. Automated driving systems purport to mitigate this risk, but self-driving systems that allow a driver to entirely disengage from the driving task also require the driver to monitor the environment and take control when necessary. Given that sleep loss impairs monitoring performance and there is a high prevalence of sleep deficiency in modern society, we hypothesized that supervising a self-driving vehicle would unmask latent sleepiness compared to manually controlled driving among individuals following their typical sleep schedules. We found that participants felt sleepier, had more involuntary transitions to sleep, had slower reaction times and more attentional failures, and showed substantial modifications in brain synchronization during and following an autonomous drive compared to a manually controlled drive. Our findings suggest that the introduction of partial self-driving capabilities in vehicles has the potential to paradoxically increase accident risk

    Yeast:One cell, one reference sequence, many genomes?

    Get PDF
    The genome of Saccharomyces cerevisiae – brewer’s or baker’s yeast – was the first eukaryotic genome to be sequenced in 1996. The identity of that yeast genome has been not just a product of sequencing, but also of its use after sequencing and particularly of its mobilization in scientific literature. We ask “what is the yeast genome?” as an empirical question by investigating “the yeast genome” as a discursive entity. Analyzing publications that followed sequencing points to several “yeast genomes” existing side-by-side: genomes as physical molecules, digital texts, and a historic event. Resolving this unified-yet-multiple “genome” helps make sense of contemporary developments in yeast genomics such as the synthetic yeast project, in which apparently “the same” genome occupies multiple roles and locations, and points to the utility of examining specific non-human genomes independent of the Human Genome Project

    Decrease of resistance to air flow with nasal strips as measured with the airflow perturbation device

    Get PDF
    BACKGROUND: Nasal strips are used by athletes, people who snore, and asthmatics to ease the burden of breathing. Although there are some published studies that demonstrate higher flow with nasal strips, none had directly measured the effect of the strips on nasal resistance using the airflow perturbation device (APD). The APD is an inexpensive instrument that can measure respiratory resistance based on changes in mouth pressure and rate of airflow. METHOD: This study tested forty-seven volunteers (14 men and 33 women), ranging in age from 17 to 51. Each volunteer was instructed to breathe normally into the APD using an oronasal mask with and without nasal strips. The APD measured respiratory resistance during inhalation, exhalation, and an average of the two. RESULTS: Results of a paired mean t-test comparing nasal strip against no nasal strip were statistically significant at the p = 0.05 level. The Breathe Right™ nasal dilator strips lowered nasal resistance by an average of 0.5 cm H(2)0/Lps from an average nasal resistance of 5.5 cm H(2)0/Lps. CONCLUSIONS: Nasal strips reduce nasal resistance when measured with the APD. The effect is equal during exhalation and during inhalation

    Reconfigurations in brain networks upon awakening from slow wave sleep: Interventions and implications in neural communication

    Get PDF
    AbstractSleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking

    Optical Propagation and Communication

    Get PDF
    Contains research summary and reports on four research projects.Maryland Procurement Office (Contract MDA 904-87-C-4044)National Science Foundation (Grant ECS 87-18970)U.S. Army Research Office (Contract DAAL03-87-K-0117)U.S. Navy - Office of Naval Research (Contract N0001 4-80-C-0941)U.S. Air Force - Office of Scientific Research (Contract F49620-87-C-0043

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on four research projects.Maryland Procurement Office Contract MDA 904-87-C-4044National Science Foundation Grant ECS 87-18970U.S. Army Research Office - Durham Contract DAAL03-87-K-0117U.S. Navy - Office of Naval Research Grant N00014-89-J-1163U.S. Air Force - Office of Scientific Research Contract F49620-87-C-004

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on six research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)Maryland Procurement Office (Contract MDA 904-87-C-4044)National Science Foundation (Grant ECS 84-15580)National Science Foundation (Grant INT-86-14329)U.S. Navy - Office of Naval Research (Contract N00014-87-G-0198)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Army Research Office - Durham (Contract DAALO3-87-K-0117)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941_U.S. Air Force - Office of Scientific Research (Contract F49620-87-C-0043

    Short-term tissue decomposition alters stable isotope values and C:N ratio, but does not change relationships between lipid content, C:N ratio, and Δδ13C in marine animals

    Get PDF
    Measures (e.g. δ15N, δ13C, %C, %N and C:N) derived from animal tissues are commonlyused to estimate diets and trophic interactions. Since tissue samples are often exposed toair or kept chilled in ice over a short-term during sample preparation, they may degrade.Herein, we hypothesize that tissue decomposition will cause changes in these measures. Inthis study, we kept marine fish, crustacean and mollusc tissues in air or ice over 120 h (5days). We found that tissue decomposition in air enriched δ15N (range 0.6½ to 1.3½) andδ13C (0.2½ to 0.4½), decreased %N (0.47 to 3.43 percentage points from staring values of~13%) and %C (4.53 to 8.29 percentage points from starting values of ~43%), and subsequentlyincreased C:N ratio (0.14 to 0.75). In air, while such changes to δ13C were relativelyminor and therefore likely tolerable, changes in δ15N, %N, %C and C:N ratio should be interpretedwith caution. Ice effectively reduced the extent to which decomposition enrichedδ15N ( 0.4½) and δ13C ( 0.2½), and eliminated decomposition in C:N ratio, %N and %C.In our second experiment, for fish tissues in either air or ice over 120 h, we observed noeffects of decomposition on relationships between lipid content, C:N ratio, and Δδ13C(change in δ13C after lipid removal), which are employed to correct δ13C for samples containinglipid. We also confirmed that lipid in tissues caused large errors when estimatingδ13C (mean ± standard error = -1.8½ ± 0.1½, range -0.6½ to -3.8½), and showed both lipidextraction and mathematical correction performed equally well to correct for lipids when estimatingδ13C. We, therefore, recommend that specimens of marine animals should be keptin ice during sample preparation for a short-term, as it is an effective means for minimizingchanges of the stable isotope measures in their tissue

    Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse

    Get PDF
    Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR
    corecore