8 research outputs found

    Clusters and Inverse Emulsions from Nanoparticle Surfactants in Organic Solvents

    No full text
    A method is presented for the synthesis of self-assembling nanoparticle surfactants in nonpolar organic solvents. The method relies on the control of long-range steric repulsion imparted by grafted polystyrene and short-range attraction from short-chain thiol molecules with an alcohol or carboxylic functionality. Similar to water-based nanoparticle surfactants, these oil-dispersed materials are found to cluster in dispersion and also to stabilize oil–water interfaces to form water-in-oil emulsions. The clustering process is characterized with dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), UV–vis spectroscopy, and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) is used to quantify the surface concentration of grafted polymer, which is found to be a parameter of critical importance for the formation of stable clusters. The clustering kinetics and dispersion stability are both affected by the polymer molecular weight, surface concentration, and chemical structure of the thiol molecules that induce particle attraction. Nanometer-sized water-in-oil emulsions are formed by sonication in the presence of nanoparticle surfactants. A large broadening of the optical absorption spectrum in the NIR region is observed because of changes in the collective surface plasmon resonance of the gold particle shell

    Efficient Electrosteric Assembly of Nanoparticle Heterodimers and Linear Heteroassemblies

    No full text
    Bottom-up approaches to the synthesis of nanostructures are of particular interest because they offer several advantages over the traditional top-down approaches. In this work, we present a new method to self-assemble nanoparticles into controlled heteroaggregates. The technique relies on carefully balancing attractive electrostatic forces with repulsive steric hindrance that is provided by surface-grafted polyethylene glycol (PEG). Two different-sized gold nanoparticles (GNPs) were used as a model system: 13 nm GNPs were functionalized with PEG-thiol and mercapto dodecanoic acid, while 7 nm GNPs were functionalized with PEG-thiol and (11- Mercaptoundecyl)­trimethylammonium bromide. When mixed together, these oppositely charged particles self-assemble into stable colloidal structures (i.e., nanoclusters) whose structure depends strongly on the surface concentration of PEG. Smaller structures are obtained as the PEG surface concentration increases because steric hindrance dominates and prevents uncontrolled aggregation. In particular, under the right conditions, we were able to selectively synthesize heterodimers (which are effectively Janus particles) and linear heteroassemblies. This method is scalable, and it provides a step forward in bottom-up synthesis of nanomaterials

    Correlating Structure and Photocurrent for Composite Semiconducting Nanoparticles with Contrast Variation Small-Angle Neutron Scattering and Photoconductive Atomic Force Microscopy

    No full text
    Aqueous dispersions of semiconducting nanoparticles have shown promise as a robust and scalable platform for the production of efficient polymer/fullerene active layers in organic photovoltaic applications. Semiconducting nanoparticles are a composite of both an n-type and p-type semiconductor contained within a single nanoparticle. In order to realize efficient organic solar cells from these materials, there is a need to understand how the size and internal distribution of materials within each nanoparticle contributes to photocurrent generation in a nanoparticle-derived device. Therefore, characterizing the internal distribution of conjugated polymer and fullerene within the dispersion is the first step to improving performance. To date, study of polymer/fullerene structure within these nanoparticles has been limited to microscopy techniques of deposited nanoparticles. In this work, we use contrast variation with small-angle neutron scattering to determine the internal distribution of poly(3-hexyl­thiophene) and [6,6]phenyl-C<sub>61</sub>-butyric acid methyl ester inside the composite nanoparticles as a function of formulation while in dispersion. On the basis of these measurements, we connect the formulation of these nanoparticles with their internal structure. Using electrostatic deposited monolayers of these nanoparticles, we characterize intrinsic charge generation using photoconductive atomic force microscopy and correlate this with structures determined from small-angle neutron scattering measurements. These techniques combined show that the best performing composite nanoparticles are those that have a uniform distribution of conjugated polymer and fullerene throughout the nanoparticle volume such that electrons and holes are easily transported out of the particle

    Structure Characterization and Properties of Metal–Surfactant Complexes Dispersed in Organic Solvents

    No full text
    This work describes the synthesis and characterization of metal–surfactant complexes. Dioctyl sulfosuccinate and dodecylbenzenesulfonate are associated with multivalent aluminum, iron, and vanadium ions using an ion exchange reaction. The metal complexes are dispersible in various organic solvents. In solvents with low polarity, the complexes form “inverse” macromolecular structures with multiple metal ions. In contrast, in alcohols, the complex size is reduced, showing a more disperse conformation. The metal and surfactant ions are still strongly bonded to each other in all the solvents probed. Small-angle X-ray and neutron scattering (SAXS and SANS) are used to characterize the structures. Simultaneous fitting of neutron and X-ray scattering spectra is performed in order to obtain an accurate description of the system. Scattering results are also validated by performing molecular dynamics (MD) simulations. The conductive and electrochemical properties of the complexes in solution are also evaluated. The dispersion of metal–organic complexes significantly increases electric conductivity, and some metal ions in the core of the complexes are shown to be electrochemically active in apolar solvents

    Polypyrrole-Coated Perfluorocarbon Nanoemulsions as a Sono-Photoacoustic Contrast Agent

    No full text
    A new contrast agent for combined photoacoustic and ultrasound imaging is presented. It has a liquid perfluorocarbon (PFC) core of about 250 nm diameter coated by a 30 nm thin polypyrrole (PPy) doped polymer shell emulsion that represents a broadband absorber covering the visible and near-infrared ranges (peak optical extinction at 1050 nm). When exposed to a sufficiently high intensity optical or acoustic pulse, the droplets vaporize to form microbubbles providing a strong increase in imaging sensitivity and specificity. The threshold for contrast agent activation can further drastically be reduced by up to 2 orders of magnitude if simultaneously exposing them with optical and acoustic pulses. The selection of PFC core liquids with low boiling points (i.e., perfluorohexane (56 °C), perfluoropentane (29 °C), and perfluorobutane (−2 °C)) facilitates activation and reduces the activation threshold of PPy-coated emulsion contrast agents to levels well within clinical safety limits (as low as 0.2 MPa at 1 mJ/cm<sup>2</sup>). Finally, the potential use of these nanoemulsions as a contrast agent is demonstrated in a series of phantom imaging studies

    Designing Two-Dimensional Protein Arrays through Fusion of Multimers and Interface Mutations

    No full text
    We have combined fusion of oligomers with cyclic symmetry and alanine substitutions to eliminate clashes and produce proteins that self-assemble into 2-D arrays upon addition of calcium ions. Using TEM, AFM, small-angle X-ray scattering, and fluorescence microscopy, we show that the designed lattices which are 5 nm high with <i>p</i>3 space group symmetry and 7.25 nm periodicity self-assemble into structures that can exceed 100 ÎŒm in characteristic length. The versatile strategy, experimental approach, and hexagonal arrays described herein should prove valuable for the engineering of functional nanostructured materials in 2-D

    Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

    No full text
    Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor–acceptor conjugated polymer, poly­(diketopyrrolopyrrole-<i>co</i>-thiophene-<i>co</i>-thieno­[3,2-<i>b</i>]­thiophene-<i>co</i>-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π–π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coating direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. We further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front

    Solvatochromism and Conformational Changes in Fully Dissolved Poly(3-alkylthiophene)s

    No full text
    Absorption spectroscopy is commonly utilized to probe optical properties that can be related, among other things, to the conformation of single, isolated conjugated polymer chains in solution. It is frequently suggested that changes in peak positions of optical spectra result from variations in the stiffness of polymer chains in solution because this modifies the conjugation length. In this work we utilize ultraviolet–visible (UV–vis) spectroscopy, small angle neutron scattering (SANS), and all atom molecular dynamic (AA-MD) simulations to closely probe the relationship between the conformation of single-chains of poly­(3-alkylthiophene)­s (P3ATs) and their optical properties. SANS results show variations in the radius of gyration and Kuhn length as a function of alkyl chain length, and structure, as well as the solvent environment. Furthermore, both SANS and MD simulations show that dissolved P3HT chains are more rigid in solvents where self-assembly and crystallization are possible. Shifts in P3AT optical properties were also observed for different solvent environments. However, these changes were not correlated to the changes in polymer conformation. Furthermore, changes in optical properties could not be perfectly described by generalized solvent–solute interactions. AA-MD simulations provide new insights into specific polymer–solvent interactions not accounted for in generalized solvatochromic theory. This work highlights the need for experiments and molecular simulations that further inform the specific role of solvent molecules on local polymer conformation and on optical properties
    corecore