413 research outputs found

    Digiwall - an audio mostly game

    Get PDF
    Presented at the 12th International Conference on Auditory Display (ICAD), London, UK, June 20-23, 2006.DigiWall is a hybrid between a climbing wall and a computer game. The climbing grips are equipped with touch sensors and lights. The interface has no computer screen. Instead sound and music are principle drivers of DigiWall interaction models. The gaming experience combines sound and music with physical movement and the sparse visuals of the climbing grips. The DigiWall soundscape carries both verbal and nonverbal information. Verbal information includes instructions on how to play a game, scores, level numbers etc. Non-verbal information is about speed, position, direction, events etc. Many different types of interaction models are possible: competitions, collaboration exercises and aesthetic experiences

    The Static Failure of Adhesively Bonded Metal Laminate Structures: A Cohesive Zone Approach

    Get PDF
    Data on distribution, ecology, biomass, recruitment, growth, mortality and productivity of the West African bloody cockle Anadara senilis were collected at the Banc d'Aguuin, Mauritania, in early 1985 and 1986. Ash-free dry weight appeared to be correlated best with shell height. A. senilis was abundant on the tidal flats of landlocked coastal bays, but nearly absent on the tidal flats bordering the open sea. The average biomass for the entire area of tidal flats was estimated at 5.5 g·m−2 ash-free dry weight. The A. senilis population appeared to consist mainly of 10 to 20-year-old individuals, showing a very slow growth and a production: biomass ratio of about 0.02 y−1. Recruitment appeared negligible and mortality was estimated to be about 10% per year. Oystercatchers (Haematopus ostralegus), the gastropod Cymbium cymbium and unknown fish species were responsible for a large share of this. The distinction of annual growth marks permitted the assessment of year-class strength, which appeared to be correlated with the average discharge of the river Senegal. This may be explained by assuming that year-class strength and river discharge both are correlated with rainfall at the Banc d'Arguin.

    DETECTION OF CLOUDS IN MEDIUM-RESOLUTION SATELLITE IMAGERY USING DEEP CONVOLUTIONAL NEURAL NETS

    Get PDF
    Cloud detection is an inextricable pre-processing step in remote sensing image analysis workflows. Most of the traditional rule-based and machine-learning-based algorithms utilize low-level features of the clouds and classify individual cloud pixels based on their spectral signatures. Cloud detection using such approaches can be challenging due to a multitude of factors including harsh lighting conditions, the presence of thin clouds, the context of surrounding pixels, and complex spatial patterns. In recent studies, deep convolutional neural networks (CNNs) have shown outstanding results in the computer vision domain. These methods are practiced for better capturing the texture, shape as well as context of images. In this study, we propose a deep learning CNN approach to detect cloud pixels from medium-resolution satellite imagery. The proposed CNN accounts for both the low-level features, such as color and texture information as well as high-level features extracted from successive convolutions of the input image. We prepared a cloud-pixel dataset of approximately 7273 randomly sampled 320 by 320 pixels image patches taken from a total of 121 Landsat-8 (30m) and Sentinel-2 (20m) image scenes. These satellite images come with cloud masks. From the available data channels, only blue, green, red, and NIR bands are fed into the model. The CNN model was trained on 5300 image patches and validated on 1973 independent image patches. As the final output from our model, we extract a binary mask of cloud pixels and non-cloud pixels. The results are benchmarked against established cloud detection methods using standard accuracy metrics
    • …
    corecore