132 research outputs found
Little Climber
In a sunny day, several kids try their best to climb the peak
The behavioral and neural basis of foreign language effect on risk-taking
Recent studies show that people exhibit a reduced decision bias in a foreign language relative to their native language. However, the underlying mechanism remains unknown. Using functional magnetic resonance imaging (fMRI) combined with an even-probability gambling task in which gambling feedback was presented in either a native language or a foreign language after each decision, we assessed the neural correlates of language modulated behavioral changes in decision making. In both foreign and native language contexts, participants showed a behavioral pattern resembles the Gambler's fallacy that losing a gamble leads to more betting than winning a gamble. While there was no language difference in gambling, bilateral caudate and amygdala gain signals were exaggerated by foreign language in relative to native language, suggesting that foreign language enhanced neural responses to rewards. Moreover, the individual difference in foreign language-induced Gambler's fallacy-like decision bias was associated with activation in the right amygdala and ventromedial prefrontal cortex, as well as functional connectivity between right amygdala and right putamen/right posterior insula. Our results confirm that outcome processing in emotion-related regions may underlie individual differences in foreign language effects in judgment and decision making
COMPARISON OF BRAIN METABOLITE CHANGES IN MANGANESE-EXPOSED WELDERS AND SMELTERS
poster abstractExcessive manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn overexposure occurs in different occupational settings, where the type and level of exposure may vary. Magnetic resonance imaging (MRI) and spectroscopy (MRS) can be used to evaluate brain Mn accumulation and to measure Mn-induced metabolite changes non-invasively. The aim of this study was to compare metabolite changes among different brain regions of welders and smelters following occupational Mn exposure. Nine Mn-exposed smelters, 14 Mn-exposed welders and 23 male matched controls were recruited from a cohort of workers from two factories in China (mean airborne Mn level: 0.227 and 0.025 mg/m3 for smelters and welders, respectively). Short-echo-time 1H MRS spectra were acquired in each subject from four volumes of interest: the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. We found that 1) in the frontal cortex, significantly decreased creatine (Cr), glutamate (Glu) and glutathione (GSH) were found in welders, whereas decreased Glu was found in smelters as compared to controls. 2) In the thalamus, reduced myo-inositol was found in both smelters and welders, while Glu and GSH were decreased in welders. These results suggest that Mn-induced brain metabolite changes may be regional in nature and more extensive in welders than in smelters. The frontal cortex seems to show a more profound change than the other brain areas tested among Mn exposed subjects. Further studies are needed to investigate the effects of exposure type and length on the mechanism of Mn neurotoxicity. (Supported by NIH/NIEHS R21 ES-017498, National Science Foundation of China Grant #81072320 and 30760210)
Correlation between intercalated magnetic layers and superconductivity in pressurized EuFe2(As0.81P0.19)2
We report comprehensive high pressure studies on correlation between
intercalated magnetic layers and superconductivity in EuFe2(As0.81P0.19)2
single crystal through in-situ high pressure resistance, specific heat, X-ray
diffraction and X-ray absorption measurements. We find that an unconfirmed
magnetic order of the intercalated layers coexists with superconductivity in a
narrow pressure range 0-0.5GPa, and then it converts to a ferromagnetic (FM)
order at pressure above 0.5 GPa, where its superconductivity is absent. The
obtained temperature-pressure phase diagram clearly demonstrates that the
unconfirmed magnetic order can emerge from the superconducting state. In stark
contrast, the superconductivity cannot develop from the FM state that is
evolved from the unconfirmed magnetic state. High pressure X-ray absorption
(XAS) measurements reveal that the pressure-induced enhancement of Eu's mean
valence plays an important role in suppressing the superconductivity and tuning
the transition from the unconfirmed magnetic state to a FM state. The unusual
interplay among valence state of Eu ions, magnetism and superconductivity under
pressure may shed new light on understanding the role of the intercalated
magnetic layers in Fe-based superconductors
Localized-to-itinerant transition preceding antiferromagnetic quantum critical point and gapless superconductivity in CeRh0.5Ir0.5In5
A fundamental problem posed from the study of correlated electron compounds, of which heavy-fermion systems are prototypes, is the need to understand the physics of states near a quantum critical point (QCP). At a QCP, magnetic order is suppressed continuously to zero temperature and unconventional superconductivity often appears. Here, we report pressure T-c. (P)-dependent In-115 nuclear quadrupole resonance (NQR) measurements on heavy-fermion antiferromagnet CeRh0.5Ir0.5In5. These experiments reveal an antiferromagnetic (AF) QCP at P-c(AF) = 1.2 GPa where a dome of superconductivity reaches a maximum transition temperature Tc. Preceding P-c(AF), however, the NQR frequency nu(Q) undergoes an abrupt increase at P-c* = 0.8 GPa in the zero-temperature limit, indicating a change from localized to itinerant character of cerium's f-electron and associated small-to-large change in the Fermi surface. At P-c(AF) where T-c is optimized, there is an unusually large fraction of gapless excitations well below T-c that implicates spin-singlet, odd-frequency pairing symmetry
Can we early diagnose metabolic syndrome using brachial-ankle pulse wave velocity in community population
BACKGROUND: The prevalence of metabolic syndrome (MetS) increased recently and there was still not a screening index to predict MetS. The aim of this study was to estimate whether brachial-ankle pulse wave velocity (baPWV), a novel marker for systemic arterial stiffness, could predict MetS in Chinese community population.
METHODS: A total of 2 191 participants were recruited and underwent medical examination including 1 455 men and 756 women from June 2011 to January 2012. MetS was diagnosed according to the criteria of the International Diabetes Federation (IDF). Multiple Logistic regressions were conducted to explore the risk factors of MetS. Receiver operating characteristic (ROC) curve was performed to estimate the ideal diagnostic cutoff point of baPWV to predict MetS.
RESULTS: The mean age was (45.35+/-8.27) years old. In multiple Logistic regression analysis, the gender, baPWV and smoking status were risk factors to MetS after adjusting age, gender, baPWV, walk time and sleeping time. The prevalence of MetS was 17.48% in 30-year age population in Shanghai. There were significant differences (chi(2) = 96.46, P \u3c 0.05) between male and female participants on MetS prevalence. According to the ROC analyses, the ideal cutoff point of baPWV was 1 358.50 cm/s (AUC = 60.20%) to predict MetS among male group and 1 350.00 cm/s (AUC = 70.90%) among female group.
CONCLUSION: BaPWV may be considered as a screening marker to predict MetS in community Chinese population and the diagnostic value of 1 350.00 cm/s was more significant for the female group
- …