32 research outputs found

    Riparian Meadow Response to Modern Conservation Grazing Management.

    Get PDF
    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions

    Wild Horses, Livestock, and Wildlife Use of Springs and Riparian Areas on the Devil\u27s Garden

    Get PDF
    In Modoc County, located in northeastern California there is a unique rangeland area heavily populated by wild horses and managed primarily by United States Forest Service known as the Devil\u27s Garden. Wild horses have significantly exceeded (4000 horses) appropriate management levels (206-402 horses) in recent years and expanded their range outside of the wild horse territory (258,000 acres) and on to private and tribal lands (over 450,000 acres). This increase has prompted concern about resource degradation particularly associated with riparian areas. In otherwise arid sage steppe rangelands, springs provide critical watering sources as well as wildlife habitat for sage grouse, deer, elk, pronghorn, and other wildlife. Our objective is to quantify the relative frequency, duration, and timing of use by horses, permitted livestock, and wildlife at spring locations. We correlate how varying levels of horse and/or livestock use affects spring site vegetation and riparian health standards. Ten representative study locations were selected on the Devil’s Garden and motion sensitive cameras were deployed at each location for 14-day sampling periods during the spring, summer and fall of 2015-2017. All photos were visually assessed to record species present, number of each species, and the time, date, and location of the observation. We present preliminary occupancy data, as well as results of corresponding vegetative cover, plant community, and bank alteration sampling. Implications for management and on-going research are discussed

    A Meaningful U.S. Cap-and-Trade System to Address Climate Change

    Full text link

    Setting a baseline for global urban virome surveillance in sewage

    Get PDF
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    Cattle Selection for Aspen and Meadow Vegetation: Implications for Restoration

    No full text
    There is concern over the decline of aspen and the lack of successful regeneration due to excessive browsing of aspen suckers by cattle and other wild and domestic ungulates. We conducted a 2-yr study on Lassen National Forest, California, to aid development of cattle grazing strategies to enhance aspen regeneration. We evaluated seasonal biomass, nutritional quality, and utilization by cattle of aspen suckers, aspen herbaceous understory vegetation, and meadow herbaceous vegetation within six aspen–meadow complexes. Aspen suckers had greater nutritional quality compared to aspen understory and meadow vegetation regardless of season or year. Nutritional quality declined with season in all three vegetation types. Early-growing season foraging by cattle focused on meadow and aspen understory vegetation. Mid-growing season decreases in meadow and aspen understory nutritional quality coincided with a marked increase in utilization of aspen suckers. By late-growing season, utilization on aspen suckers was significantly greater than aspen understory or meadow vegetation. Managers can use early-growing season grazing to reduce aspen consumption by cattle, set stocking rates so that adequate herbaceous vegetation is available throughout the growing season, provide nutritional supplements to reduce demand for nutritious aspen suckers, construct protective fencing, and implement grazing systems that insure years with mid- and late-growing season rest from heavy browsing

    Effect of Simulated Browsing on Aspen Regeneration: Implications for Restoration

    No full text
    Aspen (Populus tremuloides Michx.) is a disturbance-dependent, fire-resilient, shade-intolerant, clonal species that is in decline throughout western North America. The objective of this study was to examine the effects of intensity and season of browsing on annual height growth of aspen suckers. The goal was to aid development of livestock grazing strategies to restore stands in decline due to excessive livestock browsing. We implemented 33 combinations of intensity and season of browse on aspen suckers in three aspen stands on Eagle Lake Range District, Lassen National Forest, California, USA, during 2003 and 2004. Greatest growth was on suckers with no terminal leader browse and ≤ 25% of biomass removed from branches. Lowest growth occurred when 90% of terminal leader length and 50% of branch biomass was removed. Growth was most negatively affected by browse on terminal leader. Growth was lowest for suckers browsed midseason only and suckers browsed both early and midseason. Occurrence of conifer in the stand overstory significantly reduced sucker growth. Managers should minimize browse on terminal leaders, midseason browse over consecutive years, and repeated browse during a growing season

    Stubble height standards for Sierra Nevada meadows can be difficult to meet

    No full text
    Standards for the height of herbaceous vegetation remaining in meadows at the end of the growing season have been, and continue to be, implemented on public grazing lands throughout the Sierra Nevada. Although supporting research is limited, stubble height standards are intended to benefit riparian resources by limiting grazing pressure. This study illustrates how the timing and intensity of defoliation in mountain meadows can affect the stubble height of herbaceous vegetation at the end of the growing season, and compares these findings with current standards. The research also can help livestock operators and public lands managers develop grazing management strategies to meet stubble height standards and conduct local applied research to evaluate the appropriateness of general stubble height standards

    Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes

    No full text
    Contamination of surface waters with microbial pollutants from fecal sources is a significant human health issue. Identification of relative fecal inputs from the mosaic of potential sources common in rural watersheds is essential to effectively develop and deploy mitigation strategies. We conducted a cross-sectional longitudinal survey of fecal indicator bacteria (FIB) concentrations associated with extensive livestock grazing, recreation, and rural residences in three rural, mountainous watersheds in California, USA during critical summer flow conditions. Overall, we found that 86% to 87% of 77 stream sample sites across the study area were below contemporary Escherichia coli-based microbial water quality standards. FIB concentrations were lowest at recreation sites, followed closely by extensive livestock grazing sites. Elevated concentrations and exceedance of water quality standards were highest at sites associated with rural residences, and at intermittently flowing stream sites. Compared to national and state recommended E. coli-based water quality standards, antiquated rural regional policies based on fecal coliform concentrations overestimated potential fecal contamination by as much as four orders of magnitude in this landscape, hindering the identification of the most likely fecal sources and thus the efficient targeting of mitigation practices to address them
    corecore