109 research outputs found

    A FARM-TO-DOOR DELIVERY MODE FOR ORGANIC VEGETABLES UNDER MOBILE COMMERCE IN METROPOLISES OF CHINA

    Get PDF
    This paper presents a farm-to-door delivery mode for organic vegetables, which connects farmers and customers directly, under the circumstance of mobile commerce (M-commerce). In recent years, the need of organic vegetables is growing constantly in China. Meanwhile, the farm-to-door delivery mode widely spread in metropolises as people there barely have time to go to food markets on weekdays. However, the terrible traffic condition makes it impossible to conduct the delivery in day time. So vegetables have to be delivered very early in the morning (usually 3:00-7:00 A.M.), which makes the owner unable to attend delivery. And in the traditional delivery mode, the absence of delivery may lead to the package missing in China. Aiming at solving these practical issues in China, an SMS-based interaction system is integrated in the delivery mode for informing, endorsing, confirming, tracing and complaining. Intelligent cupboards are used as a buffer to realize the asynchronously endorsement. This is a new business mode that extends the frontiers of the M-commerce. It can greatly reduce the intermediate links of vegetable distribution and simplify the food purchasing in people’s daily life. This application of mobile technology would have a huge potential in market

    Hidden Addressing Encoding for DNA Storage

    Get PDF
    DNA is a natural storage medium with the advantages of high storage density and long service life compared with traditional media. DNA storage can meet the current storage requirements for massive data. Owing to the limitations of the DNA storage technology, the data need to be converted into short DNA sequences for storage. However, in the process, a large amount of physical redundancy will be generated to index short DNA sequences. To reduce redundancy, this study proposes a DNA storage encoding scheme with hidden addressing. Using the improved fountain encoding scheme, the index replaces part of the data to realize hidden addresses, and then, a 10.1 MB file is encoded with the hidden addressing. First, the Dottup dot plot generator and the Jaccard similarity coefficient analyze the overall self-similarity of the encoding sequence index, and then the sequence fragments of GC content are used to verify the performance of this scheme. The final results show that the encoding scheme indexes with overall lower self-similarity, and the local thermodynamic properties of the sequence are better. The hidden addressing encoding scheme proposed can not only improve the utilization of bases but also ensure the correct rate of DNA storage during the sequencing and decoding processes

    Dynamic changes in gut microbiota during pregnancy among Chinese women and influencing factors: A prospective cohort study

    Get PDF
    Gut microbiota (GM) dynamics during pregnancy vary among different populations and are affected by many factors, such as living environments and diet. This study aims to observe and evaluate the changes in the structure and function of the GM from the first to the third trimester of pregnancy in Chinese women, and to explore the main factors affecting the changes in intestinal microecology. Fifty-five Chinese pregnant women were recruited for this study and their fecal samples were collected during the first (P1), second (P2), and third trimesters (P3) of pregnancy. We exploited metagenomic sequencing to compare the composition and function of the GM in different pregnancy periods. Bioinformatic analysis revealed that there were differences in the composition of the GM among P1, P2, and P3, as indicated by the increase in α-diversity and β-diversity of the GM and the differences in the relative abundances of distinct bacterial phyla. Gestational diabetes mellitus (GDM) was the main factor (P < 0.05) that affected the changes in GM at various stages of pregnancy. There were also disparities in the structure of the GM between the GDM group and non-GDM group in the P1, P2, and P3. The GDM group exhibited increased abundances in Ruminococcus_gnavus, Akkermansia_muciniphila, Alistipes_shahii, Blautia_obeum, and Roseburia_intestinalis; while, the abundances of Bacteroides coprocola, Bacteroides plebeius, Erysipelatoclostridium ramosum, and Prevotella copri were increased in the non-GDM group. Three of the four species enriched in the non-GDM group manifestied significantly negative correlations with the insulin-signaling pathway and lipopolysaccharide biosynthesis (r ≤ −0.3, adjusted P < 0.05). In the GDM group, Bacteroides vulgatus and Ruminococcus gnavus were significantly and positively correlated with insulin signaling pathway and lipopolysaccharide biosynthesis (r ≤ −0.3, adjusted P < 0.05) among the species enriched from early pregnancy. Virtually all of the species enriched in P2 and P3 were positively correlated with steroid hormone biosynthesis. These results suggest a potential role for the GM in the development of GDM, enabling the potential prevention of GDM by targeting the GM

    The relationship between coffee-related factors and cortical and hippocampal structure: a triangulation of evidence approach and Mendelian randomization research

    Get PDF
    ObjectiveExisting studies have reported sustained changes in the cortical structure of rats due to coffee-related factors, which are speculated to occur in the human body. However, there is a lack of research on this topic. Additionally, previous observational studies have found the impact of diseases on cortical structure and the potential therapeutic effects of coffee on these diseases. Our aim was to study the causal effects of coffee-related factors on the human brain using SNPs (single nucleotide polymorphisms). We will connect these discovered causal effects to the impact of diseases on the brain. Through triangulating evidence, we will reveal the potential active areas of coffee in preventing diseases.MethodsWe utilized GWAS data from multiple cohorts and their databases, selecting instrumental variables for genetic prediction of coffee intake and plasma levels of caffeine and its direct metabolites. We applied these instrumental variables to individual data on cortical thickness and surface area, as well as hippocampal volume, from the ENIGMA and CHARGE consortium for Mendelian randomization analysis (MR). Triangular evidence was obtained by integrating existing evidence through a specified retrieval strategy, calculating the overlap between coffee's effects on brain regions and disease-related brain regions to identify potential regions of action.ResultsThe MR analysis yielded 93 positive results for 9 exposures, among which theobromine, a metabolite in the caffeine pathway, was found to be associated with increased hippocampal volume. For cortical structure, theobromine in the caffeine pathway was associated with a decrease in total surface area, while theobromine and caffeine in the pathway were associated with an increase in total thickness. The overlap rate of triangular evidence showed no difference in both overall and subgroup analyses, indicating a high overlap between the effects of coffee on brain regions and disease.ConclusionsFrom predicted outcomes from causal effects, coffee intake-related factors may have lasting effects on cortical structure. Additionally, theobromine and theophylline have the greatest impact on certain brain gyri, rather than caffeine. Triangulation evidence indicates that disease and coffee intake-related factors act on the same cortical regions, suggesting the presence of potential shared or antagonistic pathways

    Novel Cell- and Tissue-Based Assays for Detecting Misfolded and Aggregated Protein Accumulation Within Aggresomes and Inclusion Bodies

    Get PDF
    Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1–42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with β-amyloid and tau proteins in brain tissue sections from Alzheimer’s disease patients

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries under Conditions of Temperature and Vibration

    No full text
    At present, a variety of standardized 18650 commercial cylindrical lithium-ion batteries are widely used in new energy automotive industries. In this paper, the Panasonic NCR18650PF cylindrical lithium-ion batteries were studied. The NEWWARE BTS4000 battery test platform is used to test the electrical performances under temperature, vibration and temperature-vibration coupling conditions. Under the temperature conditions, the discharge capacity of the same battery at the low temperature was only 85.9% of that at the high temperature. Under the vibration condition, mathematical statistics methods (the Wilcoxon Rank-Sum test and the Kruskal-Wallis test) were used to analyze changes of the battery capacity and the internal resistance. Changes at a confidence level of 95% in the capacity and the internal resistance were considered to be significantly different between the vibration conditions at 5 Hz, 10 Hz, 20 Hz and 30 Hz versus the non-vibration condition. The internal resistance of the battery under the Y-direction vibration was the largest, and the difference was significant. Under the temperature-vibration coupling conditions, the orthogonal table L9 (34) was designed. It was found out that three factors were arranged in order of temperature, vibration frequency and vibration direction. Among them, the temperature factor is the main influencing factor affecting the performance of lithium-ion batteries

    Conduction band electron relaxation and spin relaxation dynamics in CdZnTe alloy

    No full text
    Conduction band electron relaxation and spin relaxation dynamics in Cd0.96Zn0.04Te alloy are investigated using time-resolved pump-probe spectroscopy. The measured linearly polarization pump-probe spectroscopy demonstrates the presence of a fast process and a slow process, both of which indicate electron trapping and recombination at the defect/impurity level. The time constants of the fast process are within the range of 3.1 to 4.9 ps, and those of the slow process are within the range of 16.1 to 18.1 ps. During the ultrafast thermalization process in the first picosecond, an oscillating signal that results from the band gap renormalization (BGR) effect is found. The D’yakonov-Perel’ (DP) mechanism dominates the spin relaxation process, and the spin relaxation slows down with the incorporation of Zn, because of the decrease of spin-orbit splitting energy and enhancement of electron-impurity scattering
    corecore