756 research outputs found

    Multi-kernel Correntropy-based Orientation Estimation of IMUs: Gradient Descent Methods

    Full text link
    This paper presents two computationally efficient algorithms for the orientation estimation of inertial measurement units (IMUs): the correntropy-based gradient descent (CGD) and the correntropy-based decoupled orientation estimation (CDOE). Traditional methods, such as gradient descent (GD) and decoupled orientation estimation (DOE), rely on the mean squared error (MSE) criterion, making them vulnerable to external acceleration and magnetic interference. To address this issue, we demonstrate that the multi-kernel correntropy loss (MKCL) is an optimal objective function for maximum likelihood estimation (MLE) when the noise follows a type of heavy-tailed distribution. In certain situations, the estimation error of the MKCL is bounded even in the presence of arbitrarily large outliers. By replacing the standard MSE cost function with MKCL, we develop the CGD and CDOE algorithms. We evaluate the effectiveness of our proposed methods by comparing them with existing algorithms in various situations. Experimental results indicate that our proposed methods (CGD and CDOE) outperform their conventional counterparts (GD and DOE), especially when faced with external acceleration and magnetic disturbances. Furthermore, the new algorithms demonstrate significantly lower computational complexity than Kalman filter-based approaches, making them suitable for applications with low-cost microprocessors

    Multi-kernel Correntropy Regression: Robustness, Optimality, and Application on Magnetometer Calibration

    Full text link
    This paper investigates the robustness and optimality of the multi-kernel correntropy (MKC) on linear regression. We first derive an upper error bound for a scalar regression problem in the presence of arbitrarily large outliers and reveal that the kernel bandwidth should be neither too small nor too big in the sense of the lowest upper error bound. Meanwhile, we find that the proposed MKC is related to a specific heavy-tail distribution, and the level of the heavy tail is controlled by the kernel bandwidth solely. Interestingly, this distribution becomes the Gaussian distribution when the bandwidth is set to be infinite, which allows one to tackle both Gaussian and non-Gaussian problems. We propose an expectation-maximization (EM) algorithm to estimate the parameter vectors and explore the kernel bandwidths alternatively. The results show that our algorithm is equivalent to the traditional linear regression under Gaussian noise and outperforms the conventional method under heavy-tailed noise. Both numerical simulations and experiments on a magnetometer calibration application verify the effectiveness of the proposed method

    gg-mode of neutron stars in pseudo-Newtonian gravity

    Full text link
    The equation of state (EOS) of nuclear dense matter plays a crucial role in many astrophysical phenomena associated with neutron stars (NSs). Fluid oscillations are one of the most fundamental properties therein. NSs support a family of gravity gg-modes, which are related to buoyancy. We study the gravity gg-modes caused by composition gradient and density discontinuity in the framework of pseudo-Newtonian gravity. The mode frequencies are calculated in detail and compared with Newtonian and general-relativistic (GR) solutions. We find that the gg-mode frequencies in one of the pseudo-Newtonian treatments can approximate remarkably well the GR solutions, with relative errors in the order of 1%1\%. Our findings suggest that, with much less computational cost, pseudo-Newtonian gravity can be utilized to accurately analyze oscillation of NSs constructed from an EOS with a first-order phase transition between nuclear and quark matter, as well as to provide an excellent approximation of GR effects in core-collapse supernova (CCSN) simulations.Comment: 14 pages, 13 figures, 6 tables; accepted by PR

    The promotion and inhibition of chromium and kinetic analysis on the growth of Platymonas Helgolandica

    Get PDF
    In this work, Platymonas helgolandica was used as an experimental material to study the effect of chromium on it. Under the experimental ecological condition, the concentrations of Cr (VI) were set as 0, 0.05, 0.1, 1, and 10 mg/L. Every concentration designed with three parallel groups. The ecotoxicology method was used to investigate the impact of Cr (VI) on P. helgolandica, and (EC50) was calculated by the method of linear interpolation. The results showed the growth of P. helgolandica had a more obvious β€œHormesis” when chromium was 0.05 mg/L. However, with Cr (VI) increased, the inhibition on P. helgolandica was increasing, and the cell density of P. helgolandica decreased. The EC50 achieved at 24 h, 48 h, and 72 h revealed that the relative growth rate had a downward trend over time. The remodified Logistic model, the modified Gompertz model, and the Logistic model were suitable to describe cell density in an operating cycle and were beneficial to explore the growth of P. helgolandica

    Phosphorylation Modification of Wheat Lectin VER2 Is Associated with Vernalization-Induced O-GlcNAc Signaling and Intracellular Motility

    Get PDF
    BACKGROUND: O-linked beta-N-acetylglucosamine (O-GlcNAc) modification of proteins mediates stress response and cellular motility in animal cells. The plant lectin concanavalin A can increase nuclear O-GlcNAc levels and decrease cytoplasmic O-GlcNAc levels in T lymphocytes. However, the functions of O-GlcNAc signaling in plants, as well as the relation between plant lectins and O-GlcNAc in response to environmental stimuli are largely undefined. METHODOLOGY/PRINCIPAL FINDINGS: We describe a jacalin-like lectin VER2 in wheat that shows N-acetylglucosamine and galactose specificity. Immunocytochemical localization showed VER2 expression induced predominantly at potential nuclear structures in shoot tips and young leaves and weakly in cytoplasm in response to vernalization. In contrast, under devernalization (continuous stimulation with a higher temperature after vernalization), VER2 signals appeared predominantly in cytoplasm. 2-D electrophoresis, together with western blot analysis, showed phosphorylation modification of VER2 under vernalization. Immunoblot assay with O-GlcNAc-specific antibody revealed that vernalization increased O-GlcNAc modification of proteins at the global level. An O-GlcNAc-modified protein co-immunoprecipitated with VER2 in vernalized wheat plants but not in devernalized materials. The dynamic of VER2 was observed in transgenic Arabidopsis overexpressing the VER2-GFP fusion protein. Overexpressed VER2 accelerated nuclear migration. Immunogold labeling and indirect immunofluoresence colocalization assay indicated that VER2-GFP was targeted to the secretory pathway. CONCLUSIONS/SIGNIFICANCE: O-GlcNAc signaling is involved in the vernalization response in wheat, and phosphorylation is necessary for the lectin VER2 involving O-GlcNAc signaling during vernalization. Our findings open the way to studies of O-GlcNAc protein modification in response to environmental signals in plants
    • …
    corecore