2 research outputs found

    Processing GPS Occultation Data To Characterize Atmosphere

    Get PDF
    GOAS [Global Positioning System (GPS) Occultation Analysis System] is a computer program that accepts signal-occultation data from GPS receivers aboard low-Earth-orbiting satellites and processes the data to characterize the terrestrial atmosphere and, in somewhat less comprehensive fashion, the ionosphere. GOAS is very robust and can be run in an unattended semi-operational processing mode. It features sophisticated retrieval algorithms that utilize the amplitudes and phases of the GPS signals. It incorporates a module that, using an assumed atmospheric refractivity profile, simulates the effects of the retrieval processing system, including the GPS receiver. GOAS utilizes the GIPSY software for precise determination of orbits as needed for calibration. The GOAS output for the Earth s troposphere and mid-to-lower stratosphere consists of high-resolution (<1 km) profiles of density, temperature, pressure, atmospheric refractivity, bending angles of signals, and water-vapor content versus altitude from the Earth s surface to an altitude of 30 km. The GOAS output for the ionosphere consists of electron-density profiles from an altitude of about 50 km to the altitude of a satellite, plus parameters related to the rapidly varying structure of the electron density, particularly in the E layer of the ionosphere

    Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    Get PDF
    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME
    corecore