48 research outputs found

    Cooperative Admission Control with Network Coding in 5G Underlying D2D-Satellite Communication

    No full text
    Cooperative communication supported by device to device (D2D)-LEO earthed satellite increases the performance of the resilient network and offloads base station. Additionally, network coding in a packet-based cooperative framework provides diversity and speedy recovery of lost packets. Cooperative communication advantages are subject to effective joint admission control strengthened by network coding for multiple interfaces. Joint admission control with network coding involves multiple constraints in terms of user selection, mode assignment, power allocation, and interface-based network codewords, which is challenging to solve collectively. Sub-problematization and its heuristic solution lead to a less complex solution. First, the adaptive terrestrial satellite power sentient network (ATSPSN) algorithm is proposed based on low complex convex linearization of mix integer non-linear problem (MINLP), NP-hard. ATSPSN provides optimum power allocation, mode assignment, and user selection based on joint channel conditions. Second, a multiple access network coding algorithm (MANC) is developed underlying the D2D-satellite network, which provides novel multiple interface random linear network codewords. At the end, the bi-directional matching algorithm aiming for joint admission control with network coding, named JAMANC-stream and JAMANC-batch communication, is proposed. JAMANC algorithm leads to a less complex solution and provides improved results in terms of capacity, power efficiency, and packet completion time. The theoretical lower and upper bounds are also derived for comparative study

    How Environmental Regulation, Digital Development and Technological Innovation Affect China’s Green Economy Performance: Evidence from Dynamic Thresholds and System GMM Panel Data Approaches

    No full text
    Based on the background of China’s “carbon neutral” policy and the booming digitalization, how does environmental regulation affect green economy performance? The existing literature has studied the impact of energy consumption on green economic performance. However, the literature has ignored the impact of carbon dioxide emissions on China’s green economy performance. In this regard, this research uses the non-radial distance function (NDDF) to calculate the green economic performance of China’s prefecture-level cities, and uses the dynamic panel threshold model and the systematic GMM method to study the nonlinear impacts and mechanisms of environmental regulation, digital development, technological innovation, and industrial structure upgrade on green economic performance. The panel data set contains 228 Chinese cities from 2003 to 2019. The following findings are established: first, after adding carbon dioxide emissions to China’s green economy performance, the environmental performance was reduced, and the green economy performance was also reduced. Second, the impact of environmental regulations on green economic performance has a double-threshold effect, with threshold values of −0.267 and 3.602, and this double-threshold effect has temporal and regional heterogeneity. Third, environmental regulations of different intensities have a single-threshold effect between digital development, technological innovation, and industrial structure upgrade, with threshold values of 2.955, 3.957, and 2.249, respectively. Fourth, digital development, technological innovation, and industrial structure upgrade promote green economic performance. Fifth, environmental regulation acts on green economic performance through the transmission of digitalization, technological innovation, and industrial structure upgrade. Based on these empirical findings, this research suggests that Chinese local governments should appropriately increase the intensity of environmental regulations, strengthen the digital application and technological innovation, and promote the upgrading of industrial structure to achieve the improvement of urban green economic performance

    Hardness and elastic modulus profiles of hybrid coatings

    Get PDF
    Instrumented-indentation testing (IIT) provided with a continuous stiffness measurement (CSM) technique was employed to measure hardness and elastic modulus profiles of thin organic/inorganic hybrid coatings on glass surfaces. Hybrids were synthesized by the hydrolytic condensation of (3-methacryloxypropyl) trimethoxysilane (MPMS) or vinyltrimethoxysilane (VMS), with 5–30 wt% tetraethoxysilane (TEOS), in the presence of formic acid. Coatings of 600–800 nm on glass substrates were obtained by dip-coating solutions of these hybrids with benzoyl peroxide (BPO) addition, and curing in an oven following a thermal cycle up to 120∘C. Both hardness and elastic modulus showed a maximum value close to the surface, followed by a plateau and a significant increase at higher penetrations. Hybrids based on MPMS and 20–30 wt% TEOS exhibited a good combination of intrinsic values of hardness (0.50 GPa) and brittle index (0.06–0.07), that makes them suitable for coatings of plastic substrates.Fil: Hu, Lijiang. Harbin Institute Of Technology; ChinaFil: Zhang, Xingwen. Harbin Institute Of Technology; ChinaFil: Sun, Yi. Harbin Institute Of Technology; ChinaFil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries

    No full text
    Li2S has a high theoretical capacity of 1166 mAh g(-1), but it suffers from limited rate and cycling performance. Herein we reported in-situ synthesis of thermally exfoliated graphene-Li2S (in-situ TG-Li2S) nanocomposite and its application as a superior cathode material alternative to sulfur. Li2S nanoparticles with the size of similar to 8.5 nm homogeneously anchored in graphene nanosheets were prepared via chemical reduction of pre-sublimed sulfur by lithium triethylborohydride (LiEt3BH). The in-situ TG-Li2S nanocomposite exhibited an initial capacity of 1119 mAh g(-1) Li2S (1609 mAh g(-1) S) with a negligible charged potential barrier in the first cycle. The discharge capacity retained 791 mAhg(-1) Li2S (1137 mAhg(-1) S) after 100 cycles at 0.1C and exceeded 560 mAh g(-1) Li2S (805 mAh g(-1) S) at a high rate of 2C. Moreover, coupling the composite with Si thin film anode, a Li2S/Si full cell was produced, delivering a high specific capacity of similar to 900 mAh g(-1) Li2S (1294 mAh g(-1) S). The outstanding electrode performance of in-situ TG-Li2S composite was attributed to the well dispersed small Li2S nanoparticles and highly conductive graphene nanosheets, which provided merits of facile ionic and electronic transport, efficient utilization of the active material, and flexible accommodation of volume change
    corecore