64 research outputs found

    Risk of recurrent venous thromboembolism in patients with HIV infection:A nationwide cohort study

    Get PDF
    Background Multiple studies have described a higher incidence of venous thromboembolism (VTE) in people living with an HIV infection (PWH). However, data on the risk of recurrent VTE in this population are lacking, although this question is more important for clinical practice. This study aims to estimate the risk of recurrent VTE in PWH compared to controls and to identify risk factors for recurrence within this population. Methods and findings PWH with a first VTE were derived from the AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort (2003-2015), a nationwide ongoing cohort following up PWH in care in the Netherlands. Uninfected controls were derived from the Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis (MEGA) follow-up study (19992003), a cohort of patients with a first VTE who initially participated in a case-control study in the Netherlands who were followed up for recurrent VTE. Selection was limited to persons with an index VTE suffering from deep vein thrombosis in the lower limbs and/or pulmonary embolism (PE). Participants were followed from withdrawal of anticoagulation to VTE recurrence, loss to follow-up, death, or end of study. We estimated incidence rates, cumulative incidence (accounting for competing risk of death) and hazard ratios (HRs) using Cox proportional hazards regression, adjusting for age, sex, and whether the index event was provoked or unprovoked. When analyzing risk factors among PWH, the main focus of analysis was the role of immune markers (cluster of differentiation 4 [CD4]+ T-cell count). There were 153 PWH (82% men, median 48 years) and 4,005 uninfected controls (45% men, median 49 years) with a first VTE (71% unprovoked in PWH, 34% unprovoked in controls) available for analysis. With 40 VTE recurrences during 774 person-years of follow-up (PYFU) in PWH and 635 VTE recurrences during 20,215 PYFU in controls, the incidence rates were 5.2 and 3.1 per 100 PYFU (HR: 1.70, 95% CI 1.23-2.36, p = 0.003). VTE consistently recurred more frequently per 100 PYFU in PWH in all predefined subgroups of men (5.6 versus 4.8), women (3.6 versus 1.9), and unprovoked (6.0 versus 5.2) or provoked (3.1 versus 2.1) first VTE. After adjustment, the VTE recurrence risk was higher in PWH compared to controls in the first year after anticoagulant discontinuation (HR: 1.67, 95% CI 1.04-2.70, p = 0.03) with higher cumulative incidences in PWH at 1 year (12.5% versus 5.6%) and 5 years (23.4% versus 15.3%) of follow-up. VTE recurred less frequently in PWH who were more immunodeficient at the first VTE, marked by a better CD4+ T-cell recovery on antiretroviral therapy and during anticoagulant therapy for the first VTE (adjusted HR: 0.81 per 100 cells/mm3 increase, 95% CI 0.67-0.97, p = 0.02). Sensitivity analyses addressing potential sources of bias confirmed our principal analyses. The main study limitations are that VTEs were adjudicated differently in the cohorts and that diagnostic practices changed during the 20-year study period. Conclusions Overall, the risk of recurrent VTE was elevated in PWH compared to controls. Among PWH, recurrence risk appeared to decrease with greater CD4+ T-cell recovery after a first VTE. This is relevant when deciding to (dis)continue anticoagulant therapy in PWH with otherwise unprovoked first VTE. Author summary Why was this study done? The HIV pandemic affects approximately 40 million people and causes significant morbidity, including a markedly increased risk of a venous thromboembolism (VTE). The recurrence risk of VTE in people living with HIV (PWH) is unknown, although this risk drives the anticoagulant therapy duration after a first VTE. Our study determined the recurrent VTE risk in PWH compared to uninfected controls. What did the researchers do and find? We performed an observational cohort study using data from the national ATHENA PWH cohort (2003-2015) in the Netherlands and the Dutch Multiple Environmenta

    Evidence-based approach to thrombophilia testing

    Get PDF
    Thrombophilia can be identified in about half of all patients presenting with VTE. Testing has increased tremendously for various indications, but whether the results of such tests help in the clinical management of patients has not been settled. I use evidence from observational studies to conclude that testing for hereditary thrombophilia generally does not alter the clinical management of patients with VTE, with occasional exceptions for women at fertile age. Because testing for thrombophilia only serves limited purpose this should not be performed on a routine basis

    Guidance for the treatment of deep vein thrombosis and pulmonary embolism

    Full text link

    The epidemiology of venous thromboembolism

    Full text link

    Absolute risk of venous and arterial thrombosis in HIV-infected patients and effects of combination antiretroviral therapy

    No full text
    See also Lowe GDO. Arterial disease and venous thrombosis: are they related, and if so, what should we do about it? This issue, pp 1882-5; Agnelli G, Becattini C. Venous thromboembolism and atherosclerosis: common denominators or different diseases? This issue, pp 1886-90; Prandoni P, Ghirarduzzi A, Prins MH, Pengo V, Davidson BL, Sorensen H, Pesavento R, Iotti M, Casiglia E, Iliceto S, Pagnan A, Lensing AWA. Venous thromboembolism and the risk of subsequent symptomatic atherosclerosis. This issue, pp 1891-6; Eliasson angstrom, Bergqvist D, Bjorck M, Acosta S, Sternby NH, Ogren M. Incidence and risk of venous thromboembolism in patients with verified arterial thrombosis: a population study based on 23 796 consecutive autopsies. This issue, pp 1897-1902; van der Hagen PB, Folsom AR, Jenny NS, Heckbert SR, O'Meara ES, Reich LM, Rosendaal FR, Cushman M. Subclinical atherosclerosis and the risk of future venous thrombosis in the Cardiovascular Health Study. This issue, pp 1903-8; Reich LM, Folsom AR, Key NS, Boland LL, Heckbert SR, Rosamond WD, Cushman M. Prospective study of subclinical atherosclerosis as a risk factor for venous thromboembolism. This issue, pp 1909-13; Ageno W, Prandoni P, Romualdi E, Ghirarduzzi A, Dentali F, Pesavento R, Crowther M and Venco A. The metabolic syndrome and the risk of venous thrombosis: a case-control study. This issue, pp 1914-8; S Young L, Ockelford P, Milne D, Rolfe-Vyson V, McKelvie S, Harper P. Post-treatment residual thrombus increases the risk of recurrent deep vein thrombosis and mortality. This issue, pp 1919-24; Squizzato A, Romualdi E, Ageno W. Why should statins prevent venous thromboembolism? A systematic literature search and a call for action. This issue, pp 1925-7
    • …
    corecore