48 research outputs found

    ELISA for Aging Biomarkers Induced by Telomere Dysfunction in Human Plasma

    Get PDF
    Background. We identified cathelicidin related antimicrobial protein (CRAMP) secreted from telomere dysfunctional bone marrow cells of late generation telomerase knockout mice (G4mTerc−/−), increased in blood and various tissues. It can represented human aging and disease. The main aim of this study is to investigate the sensitive direct enzyme-linked immunosorbent assay (ELISA) method to analyze the human aging and disease in plasma and the detailed methods to quantify the direct ELISA of these aging biomarkers. Methods. Telomere lengths of 50 healthy persons are measured with real-time PCR in blood cells. Plasma samples from all subjects are analyzed using direct ELISA. Results. From 25 years old person to 78 years, the telomere length becomes shorter during aging. In blood plasma, the expression levels of CRAMP increases during human aging. There is the reverse correspondence between the telomere length and the plasma CRAMP level. We also find that the fresh plasma, the frozen plasma which thawed less than 3 times, and the plasma kept in the room temperature less than 3 hours are better for the ELISA analyze of CRAMP in the plasma. Conclusion. This CRAMP ELISA could become a powerful tool for investigating the relationship between human aging and telomere length shortening

    Aggregation formation mediated anoikis resistance of BEL7402 hepatoma cells.

    Get PDF
    Anoikis resistance is the prerequisite of cancer cells metastasis. Elucidation of the mechanism of anoikis resistance remains a significant challenge. We reported here a model to mimic anoikis resistant process of hepatoma cells in vitro. Experimental results indicated cell to cell aggregation could mediate anoikis resistance of BEL7402 hepatoma cells. Further investigation of these aggregations indicated the biological properties changed greatly after the hepatoma cells lost their anchorage. Aggregation forming process could be separated into three distinct phases according to their biological characteristics, comprising of premature phase, mature phase and postmature phase. Mature phase aggregations have the premium state of cell viability and may mimic the metastatic cells in the circulating system. Biological properties of these three phases aggregations were studied in details including morphological alteration, cell viability and microarray expression profiles. It indicated there was a great upregulation of adhesion molecules during the process of aggregation formation and the cell to cell contact in the aggregation may be mediated independent of calcium involved adhesion pathway. This model might shed light on the anoikis resistance mechanism of hepatoma cells and help to develop new therapies that may target the anoikis resistant hepatoma cells in the metastasis process

    Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection

    Full text link
    As an inherently ill-posed problem, depth estimation from single images is the most challenging part of monocular 3D object detection (M3OD). Many existing methods rely on preconceived assumptions to bridge the missing spatial information in monocular images, and predict a sole depth value for every object of interest. However, these assumptions do not always hold in practical applications. To tackle this problem, we propose a depth solving system that fully explores the visual clues from the subtasks in M3OD and generates multiple estimations for the depth of each target. Since the depth estimations rely on different assumptions in essence, they present diverse distributions. Even if some assumptions collapse, the estimations established on the remaining assumptions are still reliable. In addition, we develop a depth selection and combination strategy. This strategy is able to remove abnormal estimations caused by collapsed assumptions, and adaptively combine the remaining estimations into a single one. In this way, our depth solving system becomes more precise and robust. Exploiting the clues from multiple subtasks of M3OD and without introducing any extra information, our method surpasses the current best method by more than 20% relatively on the Moderate level of test split in the KITTI 3D object detection benchmark, while still maintaining real-time efficiency.Comment: This paper has been accepted as an oral presentation of CVPR202

    CORK MEMBRANE FOR EFFICIENT OIL AND WATER SEPARATION

    No full text
    <div><p>Cork is a renewable, biocompatible, environmentally friendly and abundant biological material with microscale cellular structure. Fabrication of filtration membranes for the separation of oil and water by utilizing such natural materials to replace nonnatural membranes is a green method. A cork membrane with a water contact angle greater than 150° and an oil contact angle close to 0° was fabricated by chemically modifying cork membranes with 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane. The special wettability was achieved owing to the cellular structure and the surface composition of the cork membrane. Just like nonnatural filtration membranes, natural cork membranes exhibited excellent permeability for oils. After at least 40 cycles of oil-removal processes, the separation efficiency of the membrane was still above 99.1%. Under harsh conditions such as strong acid/alkali, high humidity, and high temperature environments, the wettability and separation efficiency exhibited excellent stability and durability. This method offers an opportunity to the practical applications of the superhydrophobic cork membrane.</p></div

    The Neuroprotective Effects of Carvacrol on Ethanol-Induced Hippocampal Neurons Impairment via the Antioxidative and Antiapoptotic Pathways

    No full text
    Chronic alcohol consumption causes hippocampal neuronal impairment, which is associated with oxidative stress and apoptosis. Carvacrol is a major monoterpenic phenol found in essential oils from the family Labiatae and has antioxidative stress and antiapoptosis actions. However, the protective effects of carvacrol in ethanol-induced hippocampal neuronal impairment have not been fully understood. We explored the neuroprotective effects of carvacrol in vivo and in vitro. Male C57BL/6 mice were exposed to 35% ethanol for 4 weeks to establish ethanol model in vivo, and hippocampal neuron injury was simulated by 200 mM ethanol in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. The oxidative stress injury of hippocampal neurons was evaluated by measuring the levels of oxidative stress biomarkers. Histopathological examinations and western blot were performed to evaluate the apoptosis of neurons. The results showed that carvacrol attenuates the cognitive dysfunction, oxidative stress, and apoptosis of the mice treated with ethanol and decreases hippocampal neurons apoptosis induced by ethanol in vitro. In addition, western blot analysis revealed that carvacrol modulates the protein expression of Bcl-2, Bax, caspase-3, and p-ERK, without influence of p-JNK and p-p38. Our results suggest that carvacrol alleviates ethanol-mediated hippocampal neuronal impairment by antioxidative and antiapoptotic effects
    corecore