31 research outputs found

    Regional assignment of the loci for adenilate kinase to 9q32 and for a-acid glycoprotein to 9q31-q32. A locus for Goltz syndrome in region 9q32-qter?

    No full text
    Normal levels of adenylate kinase (AK-1) and of agr1-acid glycoprotein (ORM1) were found in a girl with a deletion 9q32-qter secondary to a maternal translocation (4q35; 9q32), thus excluding these loci from the deleted region. These results, and comparison with other informative data, map the locus for AK-1 to 9q32 and that for ORM1 to region 9q31-q32. The girl has several signs of the Goltz syndrome (focal dermal hypoplasia), which is listed in the McKusick catalog (no. 30560) as an X-linked dominant condition. Our finding indicates that the locus for Golz syndrome is autosomal and in region 9q32-qter or that there are two such conditions, one autosomal and one X-linked

    Drosophila melanogaster acylphosphatase: a common ancestor for acylphosphatase isoenzymes of vertebrate species

    No full text
    An open reading flame encoding a putative acylphosphatase was found in Drosophila melanogaster. The corresponding gene product shows 40% identity and 22 additional amino acid residues at the C-terminus as compared to muscle- and common-type human acylphosphatases. Moreover, all the residues involved in the catalytic mechanism of vertebrate enzymes are conserved in the D. melanogaster acylphosphatase. The D. melanogaster protein and a deletion mutant, similar in length to vertebrate acylphosphatases, were produced by cloning the corresponding cDNA in Escherichia coli. The wild-type enzyme is a protein with a well-established three-dimensional fold and a markedly reduced conformational stability as compared to vertebrate isoenzymes. The specific activity of the enzyme is significantly lower than that found in vertebrate enzymes though the substrate binding capability is basically unaltered. The deletion of 22 residues does not cause a significant change in k~t, while affecting the apparent binding parameters. This work suggests that the genes encoding the vertebrate enzymes originate from an ancestor gene by duplication and subsequent evolution

    Modification of plasma glycosaminoglycans in long distance runners

    No full text
    Background: It is well documented that exercise reduces the risk of thromboembolic disease, possibly by increasing the plasma concentration of anticoagulant-antithrombotic compounds. Objectives: As plasma glycosaminoglycans (GAGs) play a role in the anticoagulant-antithrombotic potential of plasma, to examine the concentration and profile of these compounds in well trained, long distance runners and sedentary subjects. Methods: Plasma GAGs were measured in 10 male, long distance runners and 10 sedentary counterparts before and after ergometric tests. GAGs were extracted, purified, and identified by electrophoretic and enzymatic methods, and measured as hexosamine. Results: Plasma GAGs found in sedentary subjects were slow migrating heparan sulphates I and II, keratan sulphate I, and chondroitin 4–6-sulphate. Those found in trained athletes were slow migrating heparan sulphate I, chondroitin 4–6-sulphate (or keratan sulphate I), and fast migrating heparan sulphate. Total plasma concentrations of GAGs were higher in athletes than in sedentary subjects at rest. In sedentary subjects, plasma GAGs did not change after cycle ergometric exercise at 80% of their anaerobic threshold. However, the appearance of a novel band of heparan sulphate migrating faster than fast migrating heparan sulphate was observed in athletes after exercise. Conclusions: Exercise changes the amount and profile of plasma GAGs; these changes may play a role in protecting subjects who practise aerobic sports against developing cardiovascular disease
    corecore