1,076 research outputs found

    Probing quantum coherence in qubit arrays

    Get PDF
    We discuss how the observation of population localization effects in periodically driven systems can be used to quantify the presence of quantum coherence in interacting qubit arrays. Essential for our proposal is the fact that these localization effects persist beyond tight-binding Hamiltonian models. This result is of special practical relevance in those situations where direct system probing using tomographic schemes becomes infeasible beyond a very small number of qubits. As a proof of principle, we study analytically a Hamiltonian system consisting of a chain of superconducting flux qubits under the effect of a periodic driving. We provide extensive numerical support of our results in the simple case of a two-qubits chain. For this system we also study the robustness of the scheme against different types of noise and disorder. We show that localization effects underpinned by quantum coherent interactions should be observable within realistic parameter regimes in chains with a larger number o

    Reconstructing the Primordial Spectrum with CMB Temperature and Polarization

    Full text link
    We develop a new method to reconstruct the power spectrum of primordial curvature perturbations, P(k)P(k), by using both the temperature and polarization spectra of the cosmic microwave background (CMB). We test this method using several mock primordial spectra having non-trivial features including the one with an oscillatory component, and find that the spectrum can be reconstructed with a few percent accuracy by an iterative procedure in an ideal situation in which there is no observational error in the CMB data. In particular, although the previous ``cosmic inversion'' method, which used only the temperature fluctuations, suffered from large numerical errors around some specific values of kk that correspond to nodes in a transfer function, these errors are found to disappear almost completely in the new method.Comment: 18 pages, 17 figures, submitted to PR

    Quantum States of Topologically Massive Electrodynamics and Gravity

    Get PDF
    The free quantum states of topologically massive electrodynamics and gravity in 2+1 dimensions, are explicitly found. It is shown that in both theories the states are described by infrared-regular polarization tensors containing a regularization phase which depends on the spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and by finding the Wightman function to define the scalar product on such a Hilbert space. The physical properties of the states are analyzed defining creation and annihilation operators. For both theories, a canonical and covariant quantization procedure is developed. The higher order derivatives in the gravitational lagrangian are treated by means of a preliminary Dirac procedure. The closure of the Poincar\'e algebra is guaranteed by the infrared-finiteness of the states which is related to the spin of the excitations through the regularization phase. Such a phase may have interesting physical consequences.Comment: 21 page, latex, no figure

    Tetrahedron and 3D reflection equations from quantized algebra of functions

    Full text link
    Soibelman's theory of quantized function algebra A_q(SL_n) provides a representation theoretical scheme to construct a solution of the Zamolodchikov tetrahedron equation. We extend this idea originally due to Kapranov and Voevodsky to A_q(Sp_{2n}) and obtain the intertwiner K corresponding to the quartic Coxeter relation. Together with the previously known 3-dimensional (3D) R matrix, the K yields the first ever solution to the 3D analogue of the reflection equation proposed by Isaev and Kulish. It is shown that matrix elements of R and K are polynomials in q and that there are combinatorial and birational counterparts for R and K. The combinatorial ones arise either at q=0 or by tropicalization of the birational ones. A conjectural description for the type B and F_4 cases is also given.Comment: 26 pages. Minor correction

    Large Nongaussianity from Nonlocal Inflation

    Full text link
    We study the possibility of obtaining large nongaussian signatures in the Cosmic Microwave Background in a general class of single-field nonlocal hill-top inflation models. We estimate the nonlinearity parameter f_{NL} which characterizes nongaussianity in such models and show that large nongaussianity is possible. For the recently proposed p-adic inflation model we find that f_{NL} ~ 120 when the string coupling is order unity. We show that large nongaussianity is also possible in a toy model with an action similar to those which arise in string field theory.Comment: 27 pages, no figures. Added references and some clarifying remark

    Hadroproduction of the Chi1 and Chi2 States of Charmonium in 800 GeV/c Proton-Silicon Interactions

    Full text link
    The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.Comment: 4 pages, 4 figure
    • …
    corecore