690 research outputs found
Recent results on the search for continuous sources with LIGO and GEO600
An overview of the searches for continuous gravitational wave signals in LIGO
and GEO 600 performed on different recent science runs and results are
presented. This includes both searching for gravitational waves from known
pulsars as well as blind searches over a wide parameter space.Comment: TAUP2005 Proceedings to be published in Journal of Physics:
Conference Serie
First upper limit analysis and results from LIGO science data: stochastic background
I describe analysis of correlations in the outputs of the three LIGO
interferometers from LIGO's first science run, held over 17 days in August and
September of 2002, and the resulting upper limit set on a stochastic background
of gravitational waves. By searching for cross-correlations between the LIGO
detectors in Livingston, LA and Hanford, WA, we are able to set a 90%
confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting
on Gravitational Wave
Status of the joint LIGO--TAMA300 inspiral analysis
We present the status of the joint search for gravitational waves from
inspiraling neutron star binaries in the LIGO Science Run 2 and TAMA300 Data
Taking Run 8 data, which was taken from February 14 to April 14, 2003, by the
LIGO and TAMA collaborations. In this paper we discuss what has been learned
from an analysis of a subset of the data sample reserved as a ``playground''.
We determine the coincidence conditions for parameters such as the coalescence
time and chirp mass by injecting simulated Galactic binary neutron star signals
into the data stream. We select coincidence conditions so as to maximize our
efficiency of detecting simulated signals. We obtain an efficiency for our
coincident search of 78 %, and show that we are missing primarily very distant
signals for TAMA300. We perform a time slide analysis to estimate the
background due to accidental coincidence of noise triggers. We find that the
background triggers have a very different character from the triggers of
simulated signals.Comment: 10 page, 8 figures, accepted for publication in Classical and Quantum
Gravity for the special issue of the GWDAW9 Proceedings ; Corrected typos,
minor change
Searching for continuous gravitational wave signals using LIGO and Virgo detectors
Direct and unequivocal detection of gravitational waves represents a great
challenge of contemporary physics and astrophysics. A worldwide effort is
currently operating towards this direction, building ever sensitive detectors,
improving the modelling of gravitational wave sources and employing ever more
sophisticated and powerful data analysis techniques. In this paper we review
the current status of LIGO and Virgo ground based interferometric detectors and
some data analysis tools used in the continuous wave searches to extract the
faint gravitational signals from the interferometric noise data. Moreover we
discuss also relevant results from recent continuous wave searches.Comment: 9 pages, 1 figure, http://www.fisica.unisalento.it/iwra/index2.ph
Targeted searches for gravitational waves from radio pulsars
An overview of the searches for gravitational waves from radio pulsars with
LIGO and GEO is given. We give a brief description of the algorithm used in
these targeted searches and provide end-to-end validation of the technique
through hardware injections. We report on some aspects of the recent S3/S4 LIGO
and GEO search for signals from several pulsars. The gaussianity of narrow
frequency bands of S3/S4 LIGO data, where pulsar signals are expected, is
assessed with Kolmogorov-Smirnov tests. Preliminary results from the S3 run
with a network of four detectors are given for pulsar J1939+2134
Search algorithm for a gravitational wave signal in association with Gamma Ray Burst GRB030329 using the LIGO detectors
One of the brightest Gamma Ray Burst ever recorded, GRB030329, occurred
during the second science run of the LIGO detectors. At that time, both
interferometers at the Hanford, WA LIGO site were in lock and acquiring data.
The data collected from the two Hanford detectors was analyzed for the presence
of a gravitational wave signal associated with this GRB. This paper presents a
detailed description of the search algorithm implemented in the current
analysis.Comment: To appear in the Proceedings of 8th Gravitational Wave Data Analysis
Workshop (Milwaukee, WI) (Class. Quantum Grav.
Stochastic Gravitational Wave Measurements with Bar Detectors: Dependence of Response on Detector Orientation
The response of a cross-correlation measurement to an isotropic stochastic
gravitational-wave background depends on the observing geometry via the overlap
reduction function. If one of the detectors being correlated is a resonant bar
whose orientation can be changed, the response to stochastic gravitational
waves can be modulated. I derive the general form of this modulation as a
function of azimuth, both in the zero-frequency limit and at arbitrary
frequencies. Comparisons are made between pairs of nearby detectors, such as
LIGO Livingston-ALLEGRO, Virgo-AURIGA, Virgo-NAUTILUS, and EXPLORER-AURIGA,
with which stochastic cross-correlation measurements are currently being
performed, planned, or considered.Comment: 17 pages, REVTeX (uses rcs, amsmath, hyperref, and graphicx style
files), 4 figures (8 eps image files
Gravitational waves from spinning eccentric binaries
This paper is to introduce a new software called CBwaves which provides a
fast and accurate computational tool to determine the gravitational waveforms
yielded by generic spinning binaries of neutron stars and/or black holes on
eccentric orbits. This is done within the post-Newtonian (PN) framework by
integrating the equations of motion and the spin precession equations while the
radiation field is determined by a simultaneous evaluation of the analytic
waveforms. In applying CBwaves various physically interesting scenarios have
been investigated. In particular, we have studied the appropriateness of the
adiabatic approximation, and justified that the energy balance relation is
indeed insensitive to the specific form of the applied radiation reaction term.
By studying eccentric binary systems it is demonstrated that circular template
banks are very ineffective in identifying binaries even if they possess tiny
residual orbital eccentricity. In addition, by investigating the validity of
the energy balance relation we show that, on contrary to the general
expectations, the post-Newtonian approximation should not be applied once the
post-Newtonian parameter gets beyond the critical value .
Finally, by studying the early phase of the gravitational waves emitted by
strongly eccentric binary systems---which could be formed e.g. in various
many-body interactions in the galactic halo---we have found that they possess
very specific characteristics which may be used to identify these type of
binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra
Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces
The construction of optimal template banks for matched-filtering searches is
an example of the sphere covering problem. For parameter spaces with
constant-coefficient metrics a (near-) optimal template bank is achieved by the
A_n* lattice, which is the best lattice-covering in dimensions n <= 5, and is
close to the best covering known for dimensions n <= 16. Generally this
provides a substantially more efficient covering than the simpler hyper-cubic
lattice. We present an algorithm for generating lattice template banks for
constant-coefficient metrics and we illustrate its implementation by generating
A_n* template banks in n=2,3,4 dimensions.Comment: 10 pages, submitted to CQG for proceedings of GWDAW1
First all-sky search for continuous gravitational waves from unknown sources in binary systems
Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).We present the first results of an all-sky search for continuous gravitational waves from unknown
spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis
program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and
the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a
range of orbital periods from 2 to ∼2; 254 h and a frequency- and period-dependent range of frequency
modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the
orbit from ∼0.6 × 10−3 ls to ∼6; 500 ls assuming the orbit of the binary is circular. While no plausible
candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most
sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 × 10−24 at 217 Hz,
assuming the source waves are circularly polarized. Although this search has been optimized for circular
binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition,
upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius
X-1 between 20 Hz and 57.25 Hz.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.062010publishedVersionFil: Maglione, C. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, C. Argentinian Gravitational Wave Group; Argentina.Fil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Física de Partículas y Campo
- …